Answer
Verified
464.1k+ views
Hint: As it is given that the bus has travelled 5 hours at the speed of $ v\text{ km/hr} $ , we can say that the distance travelled in this 5 hours is $ 5v\text{ km} $ . Also, it is given that after the 5 hours of travel Beespur is still 20 km away, so add 20 km to the distance travelled in 5 hours to get the answer.
Complete step-by-step answer:
Let us start the solution to the above question by finding the distance travelled by the bus in the 5 hours, given that it was traveling at a speed of $ v\text{ km/hr} $ during this period. We know that $ \text{distance}=\text{speed}\times \text{time} $ . So, the distance travelled in the period of the first 5 hours is equal to $ 5v\text{ km} $ .
Also, it is given that after the bus has travelled 5 hours, Beespur is still 20km away. So, we will add the distance travelled by the bus in 5 hours with 20km to find the total distance between the point where the bus started, i.e., Daspur and Beespur.
So, the distance between Daspur and Beespur is $ \left( 5v+20 \right)\text{km} $ .
Note: Remember the formula $ \text{distance}=\text{speed}\times \text{time} $ is only valid if and only if the acceleration of the object is zero, i.e., the speed of the object must be constant. If the acceleration is constant then you need to use the different equations of motion and if the acceleration is changing then the approach of instantaneous speed comes into play. Until and unless it is mentioned, consider the speed to be constant.
Complete step-by-step answer:
Let us start the solution to the above question by finding the distance travelled by the bus in the 5 hours, given that it was traveling at a speed of $ v\text{ km/hr} $ during this period. We know that $ \text{distance}=\text{speed}\times \text{time} $ . So, the distance travelled in the period of the first 5 hours is equal to $ 5v\text{ km} $ .
Also, it is given that after the bus has travelled 5 hours, Beespur is still 20km away. So, we will add the distance travelled by the bus in 5 hours with 20km to find the total distance between the point where the bus started, i.e., Daspur and Beespur.
So, the distance between Daspur and Beespur is $ \left( 5v+20 \right)\text{km} $ .
Note: Remember the formula $ \text{distance}=\text{speed}\times \text{time} $ is only valid if and only if the acceleration of the object is zero, i.e., the speed of the object must be constant. If the acceleration is constant then you need to use the different equations of motion and if the acceleration is changing then the approach of instantaneous speed comes into play. Until and unless it is mentioned, consider the speed to be constant.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE