
A bus travels at $ v\text{ km/hr} $ . It is going from Daspur to Beespur. After the bus has travelled 5 hours, Beespur is still 20 km away. What is the distance from Despur to Beespur? Express it using $ v $ .
Answer
580.5k+ views
Hint: As it is given that the bus has travelled 5 hours at the speed of $ v\text{ km/hr} $ , we can say that the distance travelled in this 5 hours is $ 5v\text{ km} $ . Also, it is given that after the 5 hours of travel Beespur is still 20 km away, so add 20 km to the distance travelled in 5 hours to get the answer.
Complete step-by-step answer:
Let us start the solution to the above question by finding the distance travelled by the bus in the 5 hours, given that it was traveling at a speed of $ v\text{ km/hr} $ during this period. We know that $ \text{distance}=\text{speed}\times \text{time} $ . So, the distance travelled in the period of the first 5 hours is equal to $ 5v\text{ km} $ .
Also, it is given that after the bus has travelled 5 hours, Beespur is still 20km away. So, we will add the distance travelled by the bus in 5 hours with 20km to find the total distance between the point where the bus started, i.e., Daspur and Beespur.
So, the distance between Daspur and Beespur is $ \left( 5v+20 \right)\text{km} $ .
Note: Remember the formula $ \text{distance}=\text{speed}\times \text{time} $ is only valid if and only if the acceleration of the object is zero, i.e., the speed of the object must be constant. If the acceleration is constant then you need to use the different equations of motion and if the acceleration is changing then the approach of instantaneous speed comes into play. Until and unless it is mentioned, consider the speed to be constant.
Complete step-by-step answer:
Let us start the solution to the above question by finding the distance travelled by the bus in the 5 hours, given that it was traveling at a speed of $ v\text{ km/hr} $ during this period. We know that $ \text{distance}=\text{speed}\times \text{time} $ . So, the distance travelled in the period of the first 5 hours is equal to $ 5v\text{ km} $ .
Also, it is given that after the bus has travelled 5 hours, Beespur is still 20km away. So, we will add the distance travelled by the bus in 5 hours with 20km to find the total distance between the point where the bus started, i.e., Daspur and Beespur.
So, the distance between Daspur and Beespur is $ \left( 5v+20 \right)\text{km} $ .
Note: Remember the formula $ \text{distance}=\text{speed}\times \text{time} $ is only valid if and only if the acceleration of the object is zero, i.e., the speed of the object must be constant. If the acceleration is constant then you need to use the different equations of motion and if the acceleration is changing then the approach of instantaneous speed comes into play. Until and unless it is mentioned, consider the speed to be constant.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is BLO What is the full form of BLO class 8 social science CBSE

Citizens of India can vote at the age of A 18 years class 8 social science CBSE

Full form of STD, ISD and PCO

Right to vote is a AFundamental Right BFundamental class 8 social science CBSE

Summary of the poem Where the Mind is Without Fear class 8 english CBSE

What is the difference between rai and mustard see class 8 biology CBSE


