Answer
Verified
489.6k+ views
Hint: We will be using the concepts of allegation and mixtures to solve the problem. We will also be using the traditional approach of solving word problems to make equations and solve them.
Complete step-by-step answer:
We have been given that a can contains a mixture of two liquids A and B in the ratio \[7:5\]. So, we will let the quantity of liquid \[\text{A = 7}x\] and \[\text{B = 5}x\].
Now, we have been given that 9 liters of amount of mixture are drawn off so the amount in which liquid A and B drawn off will be \[7:5\] and therefore the amount of A left and B left liquids are
Liquid A left \[\text{= 7}x-\dfrac{7\times 9}{12}\]
Now since B is filled after remaining 9L
Liquid B left \[\text{= 5}x-\dfrac{5\times 9}{12}+9\]
Now, we have been given that the ratio of liquid A and liquid B after the 9 liters of mixture are drawn off. So, we have the ratios as
\[\dfrac{\text{7}x-\dfrac{7\times 9}{12}}{5x-\dfrac{5\times 9}{12}+9}\ =\ \dfrac{7}{9}\]
\[\dfrac{\text{7}x-\dfrac{21}{4}}{5x-\dfrac{15}{4}+9}\ =\ \dfrac{7}{9}\]
We will cross-multiply and evaluate the expression to get x.
\[63x-\dfrac{21}{4}\times 9\ =\ 35x-\dfrac{15}{4}\times 7+63\]
\[28x\ =\ \dfrac{21}{4}\times 9-\dfrac{15}{4}\times 7+63\]
\[28x\ =\ \dfrac{189}{4}-\dfrac{105}{4}+63\]
\[28x\ =\ \dfrac{189-105}{4}+63\]
\[28x\ =\ \dfrac{84}{4}+63\]
\[28x\ =\ 21+63\]
\[28x\ =\ 84\]
\[x\ =\ \dfrac{84}{28}\]
\[x\ =\ 3\]
Now, since we have x, we can substitute this to find initial value of A. Therefore, initial value of \[\text{A}\ =\ 7\times 3\ =\ 21\ l\]
Hence option C is the correct answer.
Note: To solve this type of question it is important to note that the B has been filled after remaining 9L of mixture. So, it is understood that 9L of B has been added to fill up the container.
Complete step-by-step answer:
We have been given that a can contains a mixture of two liquids A and B in the ratio \[7:5\]. So, we will let the quantity of liquid \[\text{A = 7}x\] and \[\text{B = 5}x\].
Now, we have been given that 9 liters of amount of mixture are drawn off so the amount in which liquid A and B drawn off will be \[7:5\] and therefore the amount of A left and B left liquids are
Liquid A left \[\text{= 7}x-\dfrac{7\times 9}{12}\]
Now since B is filled after remaining 9L
Liquid B left \[\text{= 5}x-\dfrac{5\times 9}{12}+9\]
Now, we have been given that the ratio of liquid A and liquid B after the 9 liters of mixture are drawn off. So, we have the ratios as
\[\dfrac{\text{7}x-\dfrac{7\times 9}{12}}{5x-\dfrac{5\times 9}{12}+9}\ =\ \dfrac{7}{9}\]
\[\dfrac{\text{7}x-\dfrac{21}{4}}{5x-\dfrac{15}{4}+9}\ =\ \dfrac{7}{9}\]
We will cross-multiply and evaluate the expression to get x.
\[63x-\dfrac{21}{4}\times 9\ =\ 35x-\dfrac{15}{4}\times 7+63\]
\[28x\ =\ \dfrac{21}{4}\times 9-\dfrac{15}{4}\times 7+63\]
\[28x\ =\ \dfrac{189}{4}-\dfrac{105}{4}+63\]
\[28x\ =\ \dfrac{189-105}{4}+63\]
\[28x\ =\ \dfrac{84}{4}+63\]
\[28x\ =\ 21+63\]
\[28x\ =\ 84\]
\[x\ =\ \dfrac{84}{28}\]
\[x\ =\ 3\]
Now, since we have x, we can substitute this to find initial value of A. Therefore, initial value of \[\text{A}\ =\ 7\times 3\ =\ 21\ l\]
Hence option C is the correct answer.
Note: To solve this type of question it is important to note that the B has been filled after remaining 9L of mixture. So, it is understood that 9L of B has been added to fill up the container.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE