Answer
Verified
473.1k+ views
Hint: to solve this question what we can do is first we will find the volume of liquids A and B in removed 9 litres of liquid and then we will find the ratio of liquid B when 9 litres of liquid B was added and then finally we will substitute the volumes of liquid A and in ratio equals to 7:9 and then we will solve to find the initial volume of liquid A.
Complete step by step answer:
Now, in question it is given that a cane has a mixture of two liquids A and B which are in ratio of 7:5.
And, on removal of 9 litres of mixture and filling cane with liquid B makes the ratio of liquids A and B to 7:9. Then we have to calculate the initial volume of liquid A.
Now, let initial volume of A = 7x and initial volume of B = 5x.
So, the total volume in the cane will be equal to the sum of volumes of A and B liquid together.
So, Total volume of Cane = 7x + 5x = 12x
Now, it is said that 9 litres of liquid is removed from the cane. So, here the key point is 9 litres of liquid is a mixture of A and B liquids.
Remained volume of liquid A $=7x-\left( \dfrac{7x}{12x}\times 9 \right)$, where $\left( \dfrac{7x}{12x}\times 9 \right)$ represents volume of liquid in 9 litre of removed volume.
On solving we get, Remained Volume of liquid A $=7x-\dfrac{21}{4}$
Same, Remained volume of liquid B $=5x-\left( \dfrac{5x}{12x}\times 9 \right)$, where $\left( \dfrac{5x}{12x}\times 9 \right)$ represents volume of liquid in 9 litre of removed volume.
On solving we get, Remained Volume of liquid B $=5x-\dfrac{15}{4}$
Now, it is given that the ratio of volume of liquids A and B after removing 9 litres from a cane and then adding 9 litres of liquid B in the cane is equal to 7:9.
Now, total Volume of liquid B in cane $=\left( 5x-\dfrac{15}{4} \right)+9$
So, $\dfrac{7x-\dfrac{21}{4}}{\left( 5x-\dfrac{15}{4} \right)+9}=\dfrac{7}{9}$
On solving by cross multiplication method, we get
$63x-\dfrac{189}{4}=35x-\dfrac{105}{4}+63$
$63x-35x=\dfrac{189-105}{4}+63$
$28x=84$
Obtaining value of x, we get
$x=3$
Initial volume of liquid A = 7x
Putting value of x, we get
Initial volume of liquid A $\text{= 7 }\!\!\times\!\!\text{ 3 = 21 litres}$
Hence, Initial volume of liquid A in cane is 21 litres.
Note: Expression a:b represents the ratio of two numbers a and b where there can be some constant common in both numbers. Understanding the Language of question is important in questions of ratio and proportion. Unit must be mentioned in the final answer which helps in identifying the answer from the solution.
Complete step by step answer:
Now, in question it is given that a cane has a mixture of two liquids A and B which are in ratio of 7:5.
And, on removal of 9 litres of mixture and filling cane with liquid B makes the ratio of liquids A and B to 7:9. Then we have to calculate the initial volume of liquid A.
Now, let initial volume of A = 7x and initial volume of B = 5x.
So, the total volume in the cane will be equal to the sum of volumes of A and B liquid together.
So, Total volume of Cane = 7x + 5x = 12x
Now, it is said that 9 litres of liquid is removed from the cane. So, here the key point is 9 litres of liquid is a mixture of A and B liquids.
Remained volume of liquid A $=7x-\left( \dfrac{7x}{12x}\times 9 \right)$, where $\left( \dfrac{7x}{12x}\times 9 \right)$ represents volume of liquid in 9 litre of removed volume.
On solving we get, Remained Volume of liquid A $=7x-\dfrac{21}{4}$
Same, Remained volume of liquid B $=5x-\left( \dfrac{5x}{12x}\times 9 \right)$, where $\left( \dfrac{5x}{12x}\times 9 \right)$ represents volume of liquid in 9 litre of removed volume.
On solving we get, Remained Volume of liquid B $=5x-\dfrac{15}{4}$
Now, it is given that the ratio of volume of liquids A and B after removing 9 litres from a cane and then adding 9 litres of liquid B in the cane is equal to 7:9.
Now, total Volume of liquid B in cane $=\left( 5x-\dfrac{15}{4} \right)+9$
So, $\dfrac{7x-\dfrac{21}{4}}{\left( 5x-\dfrac{15}{4} \right)+9}=\dfrac{7}{9}$
On solving by cross multiplication method, we get
$63x-\dfrac{189}{4}=35x-\dfrac{105}{4}+63$
$63x-35x=\dfrac{189-105}{4}+63$
$28x=84$
Obtaining value of x, we get
$x=3$
Initial volume of liquid A = 7x
Putting value of x, we get
Initial volume of liquid A $\text{= 7 }\!\!\times\!\!\text{ 3 = 21 litres}$
Hence, Initial volume of liquid A in cane is 21 litres.
Note: Expression a:b represents the ratio of two numbers a and b where there can be some constant common in both numbers. Understanding the Language of question is important in questions of ratio and proportion. Unit must be mentioned in the final answer which helps in identifying the answer from the solution.
Recently Updated Pages
On the portion of the straight line x + 2y 4 intercepted class 11 maths JEE_Main
The equations of two equal sides AB AC of an isosceles class 11 maths JEE_Main
If two curves whose equations are ax2 + 2hxy + by2 class 11 maths JEE_Main
For a simple pendulum a graph is plotted between its class 11 physics JEE_Main
A particle executes simple harmonic motion with a frequency class 11 physics JEE_Main
Capacity of a parallel plate condenser is 10F when class null phy sec 1 null
Trending doubts
When people say No pun intended what does that mea class 8 english CBSE
State the differences between manure and fertilize class 8 biology CBSE
Who is known as Tutie Hind A Saint Kabir B Amir Khusro class 8 social science CBSE
Who is the author of Kadambari AKalidas B Panini C class 8 social science CBSE
Advantages and disadvantages of science
Write a letter to the Municipal Commissioner to inform class 8 english CBSE