Answer
Verified
419.1k+ views
Hint: We are asked to find the area irrigated by the flowing water in $20$ minutes, given $8\,cm$ of standing or still water is required. For this, firstly calculate the volume of water that flows in the canal in one hour then using this calculate the amount of water irrigated in $20$ minutes.
Complete step by step solution:
According to the question we are given,
A canal of $width=300\,cm=3m$ (as $1m\,=\,100\,cm$ )
and $depth\left( height \right)=120cm=1.2\,m$
and water is flowing in the canal with speed $=20\,km/hr$
Now, as all our units is in metres we will convert the speed also from $km/hr$ to $m/hr$,
Thus $\text{speed}=20km/hr=20,000m/hr$ (as $1\,km=\,1000\,m$ )
Now, we have to calculate the volume of water that flows in the canal in one hour,
So we have the formula to calculate volume as,
$Volume=Area~\times speed$
$\Rightarrow $\[Volume\text{ }=\text{ }width\text{ }of\text{ }canal\times height\text{ }of\text{ }canal\times speed\text{ }of\text{ }water\text{ }in\text{ }canal\]
Substituting the values of width, height and speed we get,
\[Volume=3m\times 1.2m\times 20,000m\]
$\Rightarrow \,$$Volume=72,000{{m}^{3}}$
Thus we got the volume of water flowing in the canal in $1$ hour or $60$ minutes as $72,000\,{{m}^{3}}$
Now, we have to calculate volume of water flowing in $20$ minutes,
So, first calculate volume of water flowing in $1$ minute $=\dfrac{72,000}{60}$ (as $1\,hour=\,60\,\min $ )
$\therefore $ Volume of water flowing in $20$ minutes $=\dfrac{72,000}{60}\times 20=24,000{{m}^{3}}$
Thus we got the volume of water flowing in the canal in $20$ minutes as $24,000\,{{m}^{3}}$
Now, we have to find the area covered in $20$ minutes when $8\,cm$ of standing water is required,
So $8cm\,=\,0.08\,m$ (as $1\,m\,=\,100\,cm$ )
So, now area covered $20\,$minutes with $0.08\,m$ of standing water $=\dfrac{24,000{{m}^{3}}}{0.08m}$
$\Rightarrow \,3,00,000\,{{m}^{2}}$
$=\,\,30\,hectares$ (as $1\,hectare\,=\,10,000\,{{m}^{2}}$ )
Thus we got the area covered in $20$ minutes with $8\,cm$ of standing water as $30\,hectares$.
Note: The most important thing to keep in mind while solving such problems is the units. Carefully examine the units of the quantities mentioned in the question and then accordingly convert all the quantities in the same unit. While solving the problem all the quantities should be in the same unit.
Complete step by step solution:
According to the question we are given,
A canal of $width=300\,cm=3m$ (as $1m\,=\,100\,cm$ )
and $depth\left( height \right)=120cm=1.2\,m$
and water is flowing in the canal with speed $=20\,km/hr$
Now, as all our units is in metres we will convert the speed also from $km/hr$ to $m/hr$,
Thus $\text{speed}=20km/hr=20,000m/hr$ (as $1\,km=\,1000\,m$ )
Now, we have to calculate the volume of water that flows in the canal in one hour,
So we have the formula to calculate volume as,
$Volume=Area~\times speed$
$\Rightarrow $\[Volume\text{ }=\text{ }width\text{ }of\text{ }canal\times height\text{ }of\text{ }canal\times speed\text{ }of\text{ }water\text{ }in\text{ }canal\]
Substituting the values of width, height and speed we get,
\[Volume=3m\times 1.2m\times 20,000m\]
$\Rightarrow \,$$Volume=72,000{{m}^{3}}$
Thus we got the volume of water flowing in the canal in $1$ hour or $60$ minutes as $72,000\,{{m}^{3}}$
Now, we have to calculate volume of water flowing in $20$ minutes,
So, first calculate volume of water flowing in $1$ minute $=\dfrac{72,000}{60}$ (as $1\,hour=\,60\,\min $ )
$\therefore $ Volume of water flowing in $20$ minutes $=\dfrac{72,000}{60}\times 20=24,000{{m}^{3}}$
Thus we got the volume of water flowing in the canal in $20$ minutes as $24,000\,{{m}^{3}}$
Now, we have to find the area covered in $20$ minutes when $8\,cm$ of standing water is required,
So $8cm\,=\,0.08\,m$ (as $1\,m\,=\,100\,cm$ )
So, now area covered $20\,$minutes with $0.08\,m$ of standing water $=\dfrac{24,000{{m}^{3}}}{0.08m}$
$\Rightarrow \,3,00,000\,{{m}^{2}}$
$=\,\,30\,hectares$ (as $1\,hectare\,=\,10,000\,{{m}^{2}}$ )
Thus we got the area covered in $20$ minutes with $8\,cm$ of standing water as $30\,hectares$.
Note: The most important thing to keep in mind while solving such problems is the units. Carefully examine the units of the quantities mentioned in the question and then accordingly convert all the quantities in the same unit. While solving the problem all the quantities should be in the same unit.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE