
A car accelerates from rest at a constant rate for first $10\text{ }s$ and covers a distance \[x\] . It converts a distance $y$ in next $10\text{ }s$ at the same acceleration. Which of the following is true?
(A) \[x=3y\]
(B) $y=3x$
(C) \[x=y\]
(D) $y=2x$
Answer
544.8k+ views
Hint: In the first case, take initial velocity zero because the car is at rest. Then find the final velocity using the given time, find the distance travelled in the first case.
In the second case, consider initial velocity(that is final velocity in first case),then find the distance travelled in second case. Compare the results from both the cases, we get a required relation.
Formula used
$\begin{align}
& v=u+at \\
& v\text{ is final velocity} \\
& u\text{ is initial velocity} \\
& a\text{ is acceleration} \\
& t\text{ is time taken} \\
\end{align}$
$\text{Distance travelled is given by }5=ut+\dfrac{1}{2}a{{t}^{2}}$
Complete step by step solution
First case: Initially, car at rest, it means.
$\begin{align}
& u\left( \text{initial velocity} \right)=0 \\
& \text{Final velocity is given by} \\
& \text{ }v=u+at \\
& \text{ }v=0+at \\
& \text{ }t=10s\text{ }a\text{ constant acceleration} \\
\end{align}$
$\begin{align}
& \text{ }V=10a \\
& \left( x \right)\text{ distance travelled is given by,} \\
& \text{ }s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }s=0+\dfrac{1}{2}a{{t}^{2}}\text{ } \\
\end{align}$
$\text{ }x=50a$…………. (1)
In second case:
\[\begin{align}
& \text{Initial velocity}=10a\text{ }\left( \text{ This is final velocity in first case} \right) \\
& \text{ }v=u+at \\
& \text{ }=100+10a \\
\end{align}\]
\[\text{ }v=20a\] final velocity in second case
\[\begin{align}
& \left( y \right)\text{ Distance travelled is given by} \\
& s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }=\left( 10a \right)\left( 10 \right)+\dfrac{1}{2}a{{\left( 10 \right)}^{2}} \\
& \text{ }=100a+50a \\
\end{align}\]
\[s=150a\]
\[y=150a\]…….. (2)
Divide equation (1) by (2)
$\begin{align}
& \dfrac{x}{y}=\dfrac{50}{150} \\
& \dfrac{x}{y}=\dfrac{1}{3} \\
& y=3x\text{ option(b)} \\
& \text{This is the required result}\text{.} \\
\end{align}$
Note: Discuss and derive the formula for
\[\text{Velocity time relation, }v=u+at\]
$\text{Position time relation, }s=ut+\dfrac{1}{2}a{{t}^{2}},\text{ (}s\text{ is distance covered)}$
$\text{Position velocity relation, }{{v}^{2}}-{{u}^{2}}=2\text{ }as$
In the second case, consider initial velocity(that is final velocity in first case),then find the distance travelled in second case. Compare the results from both the cases, we get a required relation.
Formula used
$\begin{align}
& v=u+at \\
& v\text{ is final velocity} \\
& u\text{ is initial velocity} \\
& a\text{ is acceleration} \\
& t\text{ is time taken} \\
\end{align}$
$\text{Distance travelled is given by }5=ut+\dfrac{1}{2}a{{t}^{2}}$
Complete step by step solution
First case: Initially, car at rest, it means.
$\begin{align}
& u\left( \text{initial velocity} \right)=0 \\
& \text{Final velocity is given by} \\
& \text{ }v=u+at \\
& \text{ }v=0+at \\
& \text{ }t=10s\text{ }a\text{ constant acceleration} \\
\end{align}$
$\begin{align}
& \text{ }V=10a \\
& \left( x \right)\text{ distance travelled is given by,} \\
& \text{ }s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }s=0+\dfrac{1}{2}a{{t}^{2}}\text{ } \\
\end{align}$
$\text{ }x=50a$…………. (1)
In second case:
\[\begin{align}
& \text{Initial velocity}=10a\text{ }\left( \text{ This is final velocity in first case} \right) \\
& \text{ }v=u+at \\
& \text{ }=100+10a \\
\end{align}\]
\[\text{ }v=20a\] final velocity in second case
\[\begin{align}
& \left( y \right)\text{ Distance travelled is given by} \\
& s=ut+\dfrac{1}{2}a{{t}^{2}} \\
& \text{ }=\left( 10a \right)\left( 10 \right)+\dfrac{1}{2}a{{\left( 10 \right)}^{2}} \\
& \text{ }=100a+50a \\
\end{align}\]
\[s=150a\]
\[y=150a\]…….. (2)
Divide equation (1) by (2)
$\begin{align}
& \dfrac{x}{y}=\dfrac{50}{150} \\
& \dfrac{x}{y}=\dfrac{1}{3} \\
& y=3x\text{ option(b)} \\
& \text{This is the required result}\text{.} \\
\end{align}$
Note: Discuss and derive the formula for
\[\text{Velocity time relation, }v=u+at\]
$\text{Position time relation, }s=ut+\dfrac{1}{2}a{{t}^{2}},\text{ (}s\text{ is distance covered)}$
$\text{Position velocity relation, }{{v}^{2}}-{{u}^{2}}=2\text{ }as$
Recently Updated Pages
Master Class 11 Computer Science: Engaging Questions & Answers for Success

Master Class 11 Business Studies: Engaging Questions & Answers for Success

Master Class 11 Economics: Engaging Questions & Answers for Success

Master Class 11 English: Engaging Questions & Answers for Success

Master Class 11 Maths: Engaging Questions & Answers for Success

Master Class 11 Biology: Engaging Questions & Answers for Success

Trending doubts
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

There are 720 permutations of the digits 1 2 3 4 5 class 11 maths CBSE

Discuss the various forms of bacteria class 11 biology CBSE

Draw a diagram of a plant cell and label at least eight class 11 biology CBSE

State the laws of reflection of light

Explain zero factorial class 11 maths CBSE

