A car of mass 10 metric ton rolls at 2 m/s along a level track and collides with a loaded car of the mass of 20 metric ton, standing at rest. If the cars couple together, the common speed after the collision is
(A) 1 m/s
(B) 0.67 m/s
(C) 0.5 m/s
(D) 0.3 m/s
Answer
Verified
474k+ views
Hint:We are given a two-body problem in which masses are given in which one body is initially moving while the second body is at rest. They collide with each other and after the collision, the two bodies stick to each other and move with a common velocity. We can use the law of conservation of linear momentum here.
Complete step by step answer:
The law of conservation of momentum states that the momentum of an isolated system remains constant.If no external force is acting on the system, so the linear momentum of the collision must be conserved.
Let the bodies be A and B.
\[{{M}_{a}}=\]10 mT
\[{{M}_{b}}=\]20 mT
Initial velocities,
\[{{u}_{a}}=\]2 m/s
\[{{u}_{b}}=\]0 m/s
Since both after collision stick together, let their common velocity be V.
Now applying the law of conservation of momentum, \[{{M}_{a}}{{u}_{a}}+{{M}_{b}}{{u}_{b}}=({{M}_{a}}+{{M}_{b}})V\]
Putting the values back into it, \[(10\times 2)+0=(10+20)\times V\]
\[20+0=30\times V\]
So V=0.67 m/s
Hence the two bodies after collision stick to one another and move with the common speed of 0.67 m/s.
So,option (B) is the correct answer.
Note: Here the masses were given in metric ton, we did not change into kg because in the equation the mass was there on both the sides, so ultimately they cancel out each other. This is an example of an elastic collision. Also, the system was isolated.
Complete step by step answer:
The law of conservation of momentum states that the momentum of an isolated system remains constant.If no external force is acting on the system, so the linear momentum of the collision must be conserved.
Let the bodies be A and B.
\[{{M}_{a}}=\]10 mT
\[{{M}_{b}}=\]20 mT
Initial velocities,
\[{{u}_{a}}=\]2 m/s
\[{{u}_{b}}=\]0 m/s
Since both after collision stick together, let their common velocity be V.
Now applying the law of conservation of momentum, \[{{M}_{a}}{{u}_{a}}+{{M}_{b}}{{u}_{b}}=({{M}_{a}}+{{M}_{b}})V\]
Putting the values back into it, \[(10\times 2)+0=(10+20)\times V\]
\[20+0=30\times V\]
So V=0.67 m/s
Hence the two bodies after collision stick to one another and move with the common speed of 0.67 m/s.
So,option (B) is the correct answer.
Note: Here the masses were given in metric ton, we did not change into kg because in the equation the mass was there on both the sides, so ultimately they cancel out each other. This is an example of an elastic collision. Also, the system was isolated.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
Define least count of vernier callipers How do you class 11 physics CBSE
The combining capacity of an element is known as i class 11 chemistry CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
Find the image of the point 38 about the line x+3y class 11 maths CBSE
Can anyone list 10 advantages and disadvantages of friction
Distinguish between Mitosis and Meiosis class 11 biology CBSE