Answer
Verified
450k+ views
Hint:We are given a two-body problem in which masses are given in which one body is initially moving while the second body is at rest. They collide with each other and after the collision, the two bodies stick to each other and move with a common velocity. We can use the law of conservation of linear momentum here.
Complete step by step answer:
The law of conservation of momentum states that the momentum of an isolated system remains constant.If no external force is acting on the system, so the linear momentum of the collision must be conserved.
Let the bodies be A and B.
\[{{M}_{a}}=\]10 mT
\[{{M}_{b}}=\]20 mT
Initial velocities,
\[{{u}_{a}}=\]2 m/s
\[{{u}_{b}}=\]0 m/s
Since both after collision stick together, let their common velocity be V.
Now applying the law of conservation of momentum, \[{{M}_{a}}{{u}_{a}}+{{M}_{b}}{{u}_{b}}=({{M}_{a}}+{{M}_{b}})V\]
Putting the values back into it, \[(10\times 2)+0=(10+20)\times V\]
\[20+0=30\times V\]
So V=0.67 m/s
Hence the two bodies after collision stick to one another and move with the common speed of 0.67 m/s.
So,option (B) is the correct answer.
Note: Here the masses were given in metric ton, we did not change into kg because in the equation the mass was there on both the sides, so ultimately they cancel out each other. This is an example of an elastic collision. Also, the system was isolated.
Complete step by step answer:
The law of conservation of momentum states that the momentum of an isolated system remains constant.If no external force is acting on the system, so the linear momentum of the collision must be conserved.
Let the bodies be A and B.
\[{{M}_{a}}=\]10 mT
\[{{M}_{b}}=\]20 mT
Initial velocities,
\[{{u}_{a}}=\]2 m/s
\[{{u}_{b}}=\]0 m/s
Since both after collision stick together, let their common velocity be V.
Now applying the law of conservation of momentum, \[{{M}_{a}}{{u}_{a}}+{{M}_{b}}{{u}_{b}}=({{M}_{a}}+{{M}_{b}})V\]
Putting the values back into it, \[(10\times 2)+0=(10+20)\times V\]
\[20+0=30\times V\]
So V=0.67 m/s
Hence the two bodies after collision stick to one another and move with the common speed of 0.67 m/s.
So,option (B) is the correct answer.
Note: Here the masses were given in metric ton, we did not change into kg because in the equation the mass was there on both the sides, so ultimately they cancel out each other. This is an example of an elastic collision. Also, the system was isolated.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
A rainbow has circular shape because A The earth is class 11 physics CBSE
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
In Indian rupees 1 trillion is equal to how many c class 8 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
What is BLO What is the full form of BLO class 8 social science CBSE