Answer
Verified
460.8k+ views
Hint: Work done by the force is equal to change in kinetic energy of the body. Use the relation between work done and applied force. Also, take the final velocity of the car as zero.
Formula used:
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = Fd\]
Here, \[{v_f}\] is the final velocity of the car and \[{v_i}\] is the initial velocity of the car, F is the braking force and d is the distance.
Complete step by step answer:
We know the relation between force and work done. The work done is the product of force and displacement of the body.
Therefore,
\[W = Fd\] …… (1)
Here, F is the braking force and d is the distance travelled by the car after applying the brakes.
Also, the work done is the change in the kinetic energy of the object. Therefore, we can write,
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = W\] …… (2)
Here, \[{v_f}\] is the final velocity of the car and \[{v_i}\] is the initial velocity of the car.
Equate equations (1) and (2).
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = Fd\]
Since the force is applied due to the brakes, the direction of the force is in the opposite direction of the motion of the car. Therefore, the above equation becomes,
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = - Fd\]
Since the final velocity of the car is zero, the above equation becomes,
\[\dfrac{1}{2}mv_i^2 = Fd\] …… (3)
For the car moving with velocity 60 km/h, we can write the above equation as follows,
\[\dfrac{1}{2}mV_i^2 = Fd'\] …… (4)
Divide equation (2) by equation (1).
\[\dfrac{{\dfrac{1}{2}mV_i^2}}{{\dfrac{1}{2}mv_i^2}} = \dfrac{{Fd'}}{{Fd}}\]
\[ \Rightarrow \dfrac{{V_i^2}}{{v_i^2}} = \dfrac{{d'}}{d}\]
\[\therefore d' = {\left( {\dfrac{{{V_i}}}{{{v_i}}}} \right)^2}d\]
Substitute 60 km/h for \[{V_i}\], 30 km/h for \[{v_i}\] and 8 m for d in the above equation.
\[d' = {\left( {\dfrac{{60\,km/h}}{{30\,km/h}}} \right)^2}\left( {8\,m} \right)\]
\[ \Rightarrow d' = 4 \times \left( {8\,m} \right)\]
\[\therefore d' = 32\,m\]
So, the correct answer is “Option D”.
Note:
Since the braking force is the same in both the cases, you can also solve this question using kinematic relation \[{v^2} = {u^2} + 2as\]. Substitute 0 for final velocity of the car for both the cases and rearrange
Formula used:
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = Fd\]
Here, \[{v_f}\] is the final velocity of the car and \[{v_i}\] is the initial velocity of the car, F is the braking force and d is the distance.
Complete step by step answer:
We know the relation between force and work done. The work done is the product of force and displacement of the body.
Therefore,
\[W = Fd\] …… (1)
Here, F is the braking force and d is the distance travelled by the car after applying the brakes.
Also, the work done is the change in the kinetic energy of the object. Therefore, we can write,
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = W\] …… (2)
Here, \[{v_f}\] is the final velocity of the car and \[{v_i}\] is the initial velocity of the car.
Equate equations (1) and (2).
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = Fd\]
Since the force is applied due to the brakes, the direction of the force is in the opposite direction of the motion of the car. Therefore, the above equation becomes,
\[\dfrac{1}{2}mv_f^2 - \dfrac{1}{2}mv_i^2 = - Fd\]
Since the final velocity of the car is zero, the above equation becomes,
\[\dfrac{1}{2}mv_i^2 = Fd\] …… (3)
For the car moving with velocity 60 km/h, we can write the above equation as follows,
\[\dfrac{1}{2}mV_i^2 = Fd'\] …… (4)
Divide equation (2) by equation (1).
\[\dfrac{{\dfrac{1}{2}mV_i^2}}{{\dfrac{1}{2}mv_i^2}} = \dfrac{{Fd'}}{{Fd}}\]
\[ \Rightarrow \dfrac{{V_i^2}}{{v_i^2}} = \dfrac{{d'}}{d}\]
\[\therefore d' = {\left( {\dfrac{{{V_i}}}{{{v_i}}}} \right)^2}d\]
Substitute 60 km/h for \[{V_i}\], 30 km/h for \[{v_i}\] and 8 m for d in the above equation.
\[d' = {\left( {\dfrac{{60\,km/h}}{{30\,km/h}}} \right)^2}\left( {8\,m} \right)\]
\[ \Rightarrow d' = 4 \times \left( {8\,m} \right)\]
\[\therefore d' = 32\,m\]
So, the correct answer is “Option D”.
Note:
Since the braking force is the same in both the cases, you can also solve this question using kinematic relation \[{v^2} = {u^2} + 2as\]. Substitute 0 for final velocity of the car for both the cases and rearrange
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE