Answer
Verified
397k+ views
Hint: There are 52 cards in a deck. The probability of finding a card can be calculated by dividing the number of cards of the given type by the total number of cards.
Complete step-by-step answer:
Total number of cards (T) = 52
(i) a black king:
In a deck of cards, there are two black kings, one of spade and one of clubs.
\[\therefore \] Probability of finding a black king \[=\dfrac{2}{25}=\dfrac{1}{13}\]
(ii) either a black card or a king:
Total black cards = 13 x 2 = 26
Total kings other than black cards = 2
\[\therefore \] Probability $=\dfrac{2\times 26}{52}=\dfrac{28}{52}=\dfrac{7}{13}$
(iii) a jack, a queen or a king:
Total jacks = 4
Total queens = 4
Total kings = 4
\[\therefore \] Probability $=\dfrac{4+4+4}{52}=\dfrac{12}{52}=\dfrac{3}{13}$
(iv) neither an ace nor a king:
The required cards are all cards other than kings and aces.
$\Rightarrow \left( T \right)-\left( number\ of\ kings+number\ of\ aces \right)$
Number of kings = 4
Number of aces = 4
\[\therefore \] Probability $=\dfrac{\left( T \right)-\left( 4+4 \right)}{52}=\dfrac{52-8}{52}=\dfrac{44}{52}=\dfrac{11}{13}$
(v) a spade or an ace
Number of cards of spades = 13
Aces other than spades = 4 – 1 = 3
\[\therefore \] Probability $=\dfrac{3}{13}$
(vi) neither a red card nor a queen
Required cards are all cards other than red cards and queens.
Red cards = 13 x 2 = 26
Queens other than those included in red cards = 4 – 2 = 2
Therefore, probability $=\dfrac{T-\left( 26+2 \right)}{52}$
$\begin{align}
& =\dfrac{52-28}{52} \\
& =\dfrac{24}{52} \\
& =\dfrac{6}{13} \\
\end{align}$
(vii) other than an ace
Required cards are all cards other than ace.
$\Rightarrow T-\left( number\ of\ aces \right)$
Number of aces = 4
\[\therefore \] Probability $=\dfrac{T-4}{52}=\dfrac{52-4}{52}=\dfrac{48}{52}=\dfrac{12}{13}$
(viii) a ten
Number of tens = 4
\[\therefore \] Probability $=\dfrac{4}{52}=\dfrac{1}{13}$
(ix) a spade
Number of spades = 13
\[\therefore \] Probability $=\dfrac{13}{52}=\dfrac{1}{4}$
(x) a black card
Number of black cards = number of spades + number of clubs
= 13 + 13 = 26
\[\therefore \] Probability $=\dfrac{26}{52}=\dfrac{1}{2}$
(xi) the seven of clubs
There are only one seven clubs in one deck of cards.
\[\therefore \] Probability $=\dfrac{1}{52}$
(xii) a jack
Number of jacks = 4
\[\therefore \] Probability $=\dfrac{4}{52}=\dfrac{1}{13}$
(xiii) the ace of spades
There is only one ace of spades in a deck of cards.
\[\therefore \] Probability $=\dfrac{1}{52}$
(xiv) a queen
Number of queens = 4
\[\therefore \] Probability $=\dfrac{4}{52}=\dfrac{1}{13}$
(xv) a heart
Number of hearts = 13
\[\therefore \] Probability $=\dfrac{13}{52}=\dfrac{1}{4}$
(xvi) a red card
Number of red cards = number of hearts + number of diamonds
= 13 + 13 =26
\[\therefore \] Probability $=\dfrac{26}{52}$
(xvii) neither a king nor a queen
The required cards are all cards except kings and queens.
$\begin{align}
& \Rightarrow T-\left( number\ of\ kings\ +\ number\ of\ queens \right) \\
& \Rightarrow T-\left( 4+4 \right) \\
\end{align}$
\[\therefore \] Probability $=\dfrac{52-8}{52}=\dfrac{44}{52}=\dfrac{11}{13}$
Note: (1) Make sure to not count a card twice like in part (ii) or (v).
(2) Ace is not a face card. Many students make that mistake.
(3) This is the distribution of a deck of playing cards:
In a pack or deck of 52 playing cards, they are divided into 4 suits of 13 cards each; i.e. spades, hearts, diamonds and clubs. Cards of spades and clubs are black cards. Cards of hearts and diamonds are red cards. The cards in each suit are ace, king, queen, jack or knaves, 10, 9, 8, 7, 6, 5, 4, 3 and 2.
Complete step-by-step answer:
Total number of cards (T) = 52
(i) a black king:
In a deck of cards, there are two black kings, one of spade and one of clubs.
\[\therefore \] Probability of finding a black king \[=\dfrac{2}{25}=\dfrac{1}{13}\]
(ii) either a black card or a king:
Total black cards = 13 x 2 = 26
Total kings other than black cards = 2
\[\therefore \] Probability $=\dfrac{2\times 26}{52}=\dfrac{28}{52}=\dfrac{7}{13}$
(iii) a jack, a queen or a king:
Total jacks = 4
Total queens = 4
Total kings = 4
\[\therefore \] Probability $=\dfrac{4+4+4}{52}=\dfrac{12}{52}=\dfrac{3}{13}$
(iv) neither an ace nor a king:
The required cards are all cards other than kings and aces.
$\Rightarrow \left( T \right)-\left( number\ of\ kings+number\ of\ aces \right)$
Number of kings = 4
Number of aces = 4
\[\therefore \] Probability $=\dfrac{\left( T \right)-\left( 4+4 \right)}{52}=\dfrac{52-8}{52}=\dfrac{44}{52}=\dfrac{11}{13}$
(v) a spade or an ace
Number of cards of spades = 13
Aces other than spades = 4 – 1 = 3
\[\therefore \] Probability $=\dfrac{3}{13}$
(vi) neither a red card nor a queen
Required cards are all cards other than red cards and queens.
Red cards = 13 x 2 = 26
Queens other than those included in red cards = 4 – 2 = 2
Therefore, probability $=\dfrac{T-\left( 26+2 \right)}{52}$
$\begin{align}
& =\dfrac{52-28}{52} \\
& =\dfrac{24}{52} \\
& =\dfrac{6}{13} \\
\end{align}$
(vii) other than an ace
Required cards are all cards other than ace.
$\Rightarrow T-\left( number\ of\ aces \right)$
Number of aces = 4
\[\therefore \] Probability $=\dfrac{T-4}{52}=\dfrac{52-4}{52}=\dfrac{48}{52}=\dfrac{12}{13}$
(viii) a ten
Number of tens = 4
\[\therefore \] Probability $=\dfrac{4}{52}=\dfrac{1}{13}$
(ix) a spade
Number of spades = 13
\[\therefore \] Probability $=\dfrac{13}{52}=\dfrac{1}{4}$
(x) a black card
Number of black cards = number of spades + number of clubs
= 13 + 13 = 26
\[\therefore \] Probability $=\dfrac{26}{52}=\dfrac{1}{2}$
(xi) the seven of clubs
There are only one seven clubs in one deck of cards.
\[\therefore \] Probability $=\dfrac{1}{52}$
(xii) a jack
Number of jacks = 4
\[\therefore \] Probability $=\dfrac{4}{52}=\dfrac{1}{13}$
(xiii) the ace of spades
There is only one ace of spades in a deck of cards.
\[\therefore \] Probability $=\dfrac{1}{52}$
(xiv) a queen
Number of queens = 4
\[\therefore \] Probability $=\dfrac{4}{52}=\dfrac{1}{13}$
(xv) a heart
Number of hearts = 13
\[\therefore \] Probability $=\dfrac{13}{52}=\dfrac{1}{4}$
(xvi) a red card
Number of red cards = number of hearts + number of diamonds
= 13 + 13 =26
\[\therefore \] Probability $=\dfrac{26}{52}$
(xvii) neither a king nor a queen
The required cards are all cards except kings and queens.
$\begin{align}
& \Rightarrow T-\left( number\ of\ kings\ +\ number\ of\ queens \right) \\
& \Rightarrow T-\left( 4+4 \right) \\
\end{align}$
\[\therefore \] Probability $=\dfrac{52-8}{52}=\dfrac{44}{52}=\dfrac{11}{13}$
Note: (1) Make sure to not count a card twice like in part (ii) or (v).
(2) Ace is not a face card. Many students make that mistake.
(3) This is the distribution of a deck of playing cards:
In a pack or deck of 52 playing cards, they are divided into 4 suits of 13 cards each; i.e. spades, hearts, diamonds and clubs. Cards of spades and clubs are black cards. Cards of hearts and diamonds are red cards. The cards in each suit are ace, king, queen, jack or knaves, 10, 9, 8, 7, 6, 5, 4, 3 and 2.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE