Answer
Verified
477.9k+ views
- Hint: The efficiency of the Carnot engine increases if the source can be maintained at high temperature and the sink can be maintained at very low temperature.
Complete step-by-step solution -
We are given a Carnot engine which has an efficiency of 1/6. Let ${{\text{T}}_{\text{1}}}\text{ and }{{\text{T}}_{2}}$ be the temperature of the source and the sink respectively. The efficiency of the Carnot engine is given by the formula,
$\eta =\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$
Where,
$\eta $ is the efficiency of the Carnot engine.
It is given in the question that when the temperature of the sink is decreased by ${{62}^{0}}C$ the efficiency doubles. So the new efficiency after the temperature change be $\eta '$. So the new efficiency will be $\eta '=2\times \eta $.
So we are given $\eta =\dfrac{1}{6}$, so $\eta '=\dfrac{1}{3}$
$\dfrac{1}{6}=\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$ ……equation (1)
$\dfrac{1}{3}=\dfrac{{{\text{T}}_{\text{1}}}\text{-(}{{\text{T}}_{\text{2}}}\text{-62)}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}+\dfrac{62}{{{\text{T}}_{1}}}$……equation (2)
Substituting equation (1) in equation (2), we get
$\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{62}{{{\text{T}}_{1}}}$
$\dfrac{1}{6}=\dfrac{62}{{{\text{T}}_{1}}}$
$\therefore \text{ }{{\text{T}}_{1}}=372K={{(372-273)}^{0}}C$
$\Rightarrow \text{ }{{\text{T}}_{1}}={{99}^{0}}C$
${{\text{T}}_{2}}={{\text{T}}_{1}}\left( \dfrac{5}{6} \right)=372\left( \dfrac{5}{6} \right)$
${{\text{T}}_{2}}=310K={{37}^{0}}C$
So the temperature of the source is ${{99}^{0}}C$and the temperature of the sink is $\text{3}{{\text{7}}^{0}}C$.
The answer to the question is option (D) ${{99}^{0}}C,\text{ 3}{{\text{7}}^{0}}C$
Additional Information: Carnot engine was proposed by Leonard Carnot to find out the theoretical efficiency possible for a heat engine. He used basic thermodynamic processes in his theoretical model. It uses the concept of converting heat energy into mechanical energy.
Note: The efficiency of the Carnot engine is defined as the ratio of work done by the engine to the amount of heat drawn from the source.
Complete step-by-step solution -
We are given a Carnot engine which has an efficiency of 1/6. Let ${{\text{T}}_{\text{1}}}\text{ and }{{\text{T}}_{2}}$ be the temperature of the source and the sink respectively. The efficiency of the Carnot engine is given by the formula,
$\eta =\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$
Where,
$\eta $ is the efficiency of the Carnot engine.
It is given in the question that when the temperature of the sink is decreased by ${{62}^{0}}C$ the efficiency doubles. So the new efficiency after the temperature change be $\eta '$. So the new efficiency will be $\eta '=2\times \eta $.
So we are given $\eta =\dfrac{1}{6}$, so $\eta '=\dfrac{1}{3}$
$\dfrac{1}{6}=\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$ ……equation (1)
$\dfrac{1}{3}=\dfrac{{{\text{T}}_{\text{1}}}\text{-(}{{\text{T}}_{\text{2}}}\text{-62)}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}+\dfrac{62}{{{\text{T}}_{1}}}$……equation (2)
Substituting equation (1) in equation (2), we get
$\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{62}{{{\text{T}}_{1}}}$
$\dfrac{1}{6}=\dfrac{62}{{{\text{T}}_{1}}}$
$\therefore \text{ }{{\text{T}}_{1}}=372K={{(372-273)}^{0}}C$
$\Rightarrow \text{ }{{\text{T}}_{1}}={{99}^{0}}C$
${{\text{T}}_{2}}={{\text{T}}_{1}}\left( \dfrac{5}{6} \right)=372\left( \dfrac{5}{6} \right)$
${{\text{T}}_{2}}=310K={{37}^{0}}C$
So the temperature of the source is ${{99}^{0}}C$and the temperature of the sink is $\text{3}{{\text{7}}^{0}}C$.
The answer to the question is option (D) ${{99}^{0}}C,\text{ 3}{{\text{7}}^{0}}C$
Additional Information: Carnot engine was proposed by Leonard Carnot to find out the theoretical efficiency possible for a heat engine. He used basic thermodynamic processes in his theoretical model. It uses the concept of converting heat energy into mechanical energy.
Note: The efficiency of the Carnot engine is defined as the ratio of work done by the engine to the amount of heat drawn from the source.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE