Answer
Verified
487.2k+ views
- Hint: The efficiency of the Carnot engine increases if the source can be maintained at high temperature and the sink can be maintained at very low temperature.
Complete step-by-step solution -
We are given a Carnot engine which has an efficiency of 1/6. Let ${{\text{T}}_{\text{1}}}\text{ and }{{\text{T}}_{2}}$ be the temperature of the source and the sink respectively. The efficiency of the Carnot engine is given by the formula,
$\eta =\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$
Where,
$\eta $ is the efficiency of the Carnot engine.
It is given in the question that when the temperature of the sink is decreased by ${{62}^{0}}C$ the efficiency doubles. So the new efficiency after the temperature change be $\eta '$. So the new efficiency will be $\eta '=2\times \eta $.
So we are given $\eta =\dfrac{1}{6}$, so $\eta '=\dfrac{1}{3}$
$\dfrac{1}{6}=\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$ ……equation (1)
$\dfrac{1}{3}=\dfrac{{{\text{T}}_{\text{1}}}\text{-(}{{\text{T}}_{\text{2}}}\text{-62)}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}+\dfrac{62}{{{\text{T}}_{1}}}$……equation (2)
Substituting equation (1) in equation (2), we get
$\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{62}{{{\text{T}}_{1}}}$
$\dfrac{1}{6}=\dfrac{62}{{{\text{T}}_{1}}}$
$\therefore \text{ }{{\text{T}}_{1}}=372K={{(372-273)}^{0}}C$
$\Rightarrow \text{ }{{\text{T}}_{1}}={{99}^{0}}C$
${{\text{T}}_{2}}={{\text{T}}_{1}}\left( \dfrac{5}{6} \right)=372\left( \dfrac{5}{6} \right)$
${{\text{T}}_{2}}=310K={{37}^{0}}C$
So the temperature of the source is ${{99}^{0}}C$and the temperature of the sink is $\text{3}{{\text{7}}^{0}}C$.
The answer to the question is option (D) ${{99}^{0}}C,\text{ 3}{{\text{7}}^{0}}C$
Additional Information: Carnot engine was proposed by Leonard Carnot to find out the theoretical efficiency possible for a heat engine. He used basic thermodynamic processes in his theoretical model. It uses the concept of converting heat energy into mechanical energy.
Note: The efficiency of the Carnot engine is defined as the ratio of work done by the engine to the amount of heat drawn from the source.
Complete step-by-step solution -
We are given a Carnot engine which has an efficiency of 1/6. Let ${{\text{T}}_{\text{1}}}\text{ and }{{\text{T}}_{2}}$ be the temperature of the source and the sink respectively. The efficiency of the Carnot engine is given by the formula,
$\eta =\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$
Where,
$\eta $ is the efficiency of the Carnot engine.
It is given in the question that when the temperature of the sink is decreased by ${{62}^{0}}C$ the efficiency doubles. So the new efficiency after the temperature change be $\eta '$. So the new efficiency will be $\eta '=2\times \eta $.
So we are given $\eta =\dfrac{1}{6}$, so $\eta '=\dfrac{1}{3}$
$\dfrac{1}{6}=\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$ ……equation (1)
$\dfrac{1}{3}=\dfrac{{{\text{T}}_{\text{1}}}\text{-(}{{\text{T}}_{\text{2}}}\text{-62)}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}+\dfrac{62}{{{\text{T}}_{1}}}$……equation (2)
Substituting equation (1) in equation (2), we get
$\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{62}{{{\text{T}}_{1}}}$
$\dfrac{1}{6}=\dfrac{62}{{{\text{T}}_{1}}}$
$\therefore \text{ }{{\text{T}}_{1}}=372K={{(372-273)}^{0}}C$
$\Rightarrow \text{ }{{\text{T}}_{1}}={{99}^{0}}C$
${{\text{T}}_{2}}={{\text{T}}_{1}}\left( \dfrac{5}{6} \right)=372\left( \dfrac{5}{6} \right)$
${{\text{T}}_{2}}=310K={{37}^{0}}C$
So the temperature of the source is ${{99}^{0}}C$and the temperature of the sink is $\text{3}{{\text{7}}^{0}}C$.
The answer to the question is option (D) ${{99}^{0}}C,\text{ 3}{{\text{7}}^{0}}C$
Additional Information: Carnot engine was proposed by Leonard Carnot to find out the theoretical efficiency possible for a heat engine. He used basic thermodynamic processes in his theoretical model. It uses the concept of converting heat energy into mechanical energy.
Note: The efficiency of the Carnot engine is defined as the ratio of work done by the engine to the amount of heat drawn from the source.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Who was the leader of the Bolshevik Party A Leon Trotsky class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the largest saltwater lake in India A Chilika class 8 social science CBSE
Ghatikas during the period of Satavahanas were aHospitals class 6 social science CBSE