A Carnot engine has an efficiency of 1/6. When the temperature of the sink is reduced by ${{62}^{0}}C$, its efficiency is doubled. The temperature of the source and the sink are, respectively:
(a). ${{124}^{0}}C,\text{ 6}{{\text{2}}^{0}}C$
(b). ${{37}^{0}}C,\text{ 9}{{\text{9}}^{0}}C$
(c). ${{62}^{0}}C,\text{ 12}{{\text{4}}^{0}}C$
(d). ${{99}^{0}}C,\text{ 3}{{\text{7}}^{0}}C$
Answer
Verified
496.5k+ views
- Hint: The efficiency of the Carnot engine increases if the source can be maintained at high temperature and the sink can be maintained at very low temperature.
Complete step-by-step solution -
We are given a Carnot engine which has an efficiency of 1/6. Let ${{\text{T}}_{\text{1}}}\text{ and }{{\text{T}}_{2}}$ be the temperature of the source and the sink respectively. The efficiency of the Carnot engine is given by the formula,
$\eta =\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$
Where,
$\eta $ is the efficiency of the Carnot engine.
It is given in the question that when the temperature of the sink is decreased by ${{62}^{0}}C$ the efficiency doubles. So the new efficiency after the temperature change be $\eta '$. So the new efficiency will be $\eta '=2\times \eta $.
So we are given $\eta =\dfrac{1}{6}$, so $\eta '=\dfrac{1}{3}$
$\dfrac{1}{6}=\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$ ……equation (1)
$\dfrac{1}{3}=\dfrac{{{\text{T}}_{\text{1}}}\text{-(}{{\text{T}}_{\text{2}}}\text{-62)}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}+\dfrac{62}{{{\text{T}}_{1}}}$……equation (2)
Substituting equation (1) in equation (2), we get
$\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{62}{{{\text{T}}_{1}}}$
$\dfrac{1}{6}=\dfrac{62}{{{\text{T}}_{1}}}$
$\therefore \text{ }{{\text{T}}_{1}}=372K={{(372-273)}^{0}}C$
$\Rightarrow \text{ }{{\text{T}}_{1}}={{99}^{0}}C$
${{\text{T}}_{2}}={{\text{T}}_{1}}\left( \dfrac{5}{6} \right)=372\left( \dfrac{5}{6} \right)$
${{\text{T}}_{2}}=310K={{37}^{0}}C$
So the temperature of the source is ${{99}^{0}}C$and the temperature of the sink is $\text{3}{{\text{7}}^{0}}C$.
The answer to the question is option (D) ${{99}^{0}}C,\text{ 3}{{\text{7}}^{0}}C$
Additional Information: Carnot engine was proposed by Leonard Carnot to find out the theoretical efficiency possible for a heat engine. He used basic thermodynamic processes in his theoretical model. It uses the concept of converting heat energy into mechanical energy.
Note: The efficiency of the Carnot engine is defined as the ratio of work done by the engine to the amount of heat drawn from the source.
Complete step-by-step solution -
We are given a Carnot engine which has an efficiency of 1/6. Let ${{\text{T}}_{\text{1}}}\text{ and }{{\text{T}}_{2}}$ be the temperature of the source and the sink respectively. The efficiency of the Carnot engine is given by the formula,
$\eta =\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$
Where,
$\eta $ is the efficiency of the Carnot engine.
It is given in the question that when the temperature of the sink is decreased by ${{62}^{0}}C$ the efficiency doubles. So the new efficiency after the temperature change be $\eta '$. So the new efficiency will be $\eta '=2\times \eta $.
So we are given $\eta =\dfrac{1}{6}$, so $\eta '=\dfrac{1}{3}$
$\dfrac{1}{6}=\dfrac{{{\text{T}}_{\text{1}}}\text{-}{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}$ ……equation (1)
$\dfrac{1}{3}=\dfrac{{{\text{T}}_{\text{1}}}\text{-(}{{\text{T}}_{\text{2}}}\text{-62)}}{{{\text{T}}_{\text{1}}}}=1-\dfrac{{{\text{T}}_{\text{2}}}}{{{\text{T}}_{\text{1}}}}+\dfrac{62}{{{\text{T}}_{1}}}$……equation (2)
Substituting equation (1) in equation (2), we get
$\dfrac{1}{3}=\dfrac{1}{6}+\dfrac{62}{{{\text{T}}_{1}}}$
$\dfrac{1}{6}=\dfrac{62}{{{\text{T}}_{1}}}$
$\therefore \text{ }{{\text{T}}_{1}}=372K={{(372-273)}^{0}}C$
$\Rightarrow \text{ }{{\text{T}}_{1}}={{99}^{0}}C$
${{\text{T}}_{2}}={{\text{T}}_{1}}\left( \dfrac{5}{6} \right)=372\left( \dfrac{5}{6} \right)$
${{\text{T}}_{2}}=310K={{37}^{0}}C$
So the temperature of the source is ${{99}^{0}}C$and the temperature of the sink is $\text{3}{{\text{7}}^{0}}C$.
The answer to the question is option (D) ${{99}^{0}}C,\text{ 3}{{\text{7}}^{0}}C$
Additional Information: Carnot engine was proposed by Leonard Carnot to find out the theoretical efficiency possible for a heat engine. He used basic thermodynamic processes in his theoretical model. It uses the concept of converting heat energy into mechanical energy.
Note: The efficiency of the Carnot engine is defined as the ratio of work done by the engine to the amount of heat drawn from the source.
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE
Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE
With reference to graphite and diamond which of the class 11 chemistry CBSE
A certain household has consumed 250 units of energy class 11 physics CBSE
The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE
What is the formula mass of the iodine molecule class 11 chemistry CBSE
Trending doubts
The reservoir of dam is called Govind Sagar A Jayakwadi class 11 social science CBSE
What problem did Carter face when he reached the mummy class 11 english CBSE
Proton was discovered by A Thomson B Rutherford C Chadwick class 11 chemistry CBSE
In China rose the flowers are A Zygomorphic epigynous class 11 biology CBSE
What is Environment class 11 chemistry CBSE
Nucleolus is present in which part of the cell class 11 biology CBSE