Answer
Verified
440.7k+ views
Hint: Assume the total money that is distributed as ‘x’. Find the amount A and B get by finding \[{{\left( \dfrac{3}{16} \right)}^{th}}\] part of x and \[{{\left( \dfrac{1}{4} \right)}^{th}}\] of part of x respectively. Now, calculate the amount of money C gets by subtracting the sum of money of A and B from total money. Equate the amount of money C gets with 81 and find the value of x. Finally, substitute this value of x in the expression of money obtained by B to get the answer.
Complete step by step answer:
Here, we have been given that a certain amount of money is distributed among A, B and C. Let us assume the total amount of money distributed is ‘x’.
Now, it is given that A gets \[\dfrac{3}{16}\] and B gets \[\dfrac{1}{4}\] of the whole amount. Therefore, we have,
Money obtained by A = \[\dfrac{3}{16}\times x=\dfrac{3x}{16}\]
Money obtained by B = \[\dfrac{1}{4}\times x=\dfrac{x}{4}\]
Therefore, the amount of money obtained by C will be the difference of total money and sum of money obtained by A and B. So, we have,
\[\Rightarrow \] Money obtained by C = \[x-\left( \dfrac{3x}{16}+\dfrac{x}{4} \right)\]
\[\Rightarrow \] Money obtained by C = \[x-\left( \dfrac{3x+4x}{16} \right)\]
\[\Rightarrow \] Money obtained by C = \[x-\dfrac{7x}{16}\]
\[\Rightarrow \] Money obtained by C = \[\dfrac{16x-7x}{16}\]
\[\Rightarrow \] Money obtained by C = \[\dfrac{9x}{16}\]
It is given that money obtained by C is Rs.81. Therefore, equating it with the expression of money obtained by C, we get,
\[\begin{align}
& \Rightarrow \dfrac{9x}{16}=81 \\
& \Rightarrow x=\dfrac{16\times 81}{9} \\
\end{align}\]
\[\Rightarrow x=\] Rs.144
Therefore, the total amount of money that was distributed is Rs.144.
Now, we have to find the amount of money obtained by B. So, substituting the obtained value of x in the expression of money obtained by B, we get,
Money obtained by B = \[\dfrac{144}{4}\] = Rs.36
So, the correct answer is “Option a”.
Note: One may note that we do not have to assume the amount of money obtained by A and B as different variables. It may confuse us. We just have to assume one variable and carry out our calculation using that assumption. Note that the amount of money obtained by C was given to us. That is why we equated it with the obtained expression for money obtained by C. Remember that the value of x is not our solution, we have to substitute it in the expression \[\dfrac{x}{4}\]. Sometimes in a hurry students just write the value of ‘x’ as the answer. So, the question must be read carefully.
Complete step by step answer:
Here, we have been given that a certain amount of money is distributed among A, B and C. Let us assume the total amount of money distributed is ‘x’.
Now, it is given that A gets \[\dfrac{3}{16}\] and B gets \[\dfrac{1}{4}\] of the whole amount. Therefore, we have,
Money obtained by A = \[\dfrac{3}{16}\times x=\dfrac{3x}{16}\]
Money obtained by B = \[\dfrac{1}{4}\times x=\dfrac{x}{4}\]
Therefore, the amount of money obtained by C will be the difference of total money and sum of money obtained by A and B. So, we have,
\[\Rightarrow \] Money obtained by C = \[x-\left( \dfrac{3x}{16}+\dfrac{x}{4} \right)\]
\[\Rightarrow \] Money obtained by C = \[x-\left( \dfrac{3x+4x}{16} \right)\]
\[\Rightarrow \] Money obtained by C = \[x-\dfrac{7x}{16}\]
\[\Rightarrow \] Money obtained by C = \[\dfrac{16x-7x}{16}\]
\[\Rightarrow \] Money obtained by C = \[\dfrac{9x}{16}\]
It is given that money obtained by C is Rs.81. Therefore, equating it with the expression of money obtained by C, we get,
\[\begin{align}
& \Rightarrow \dfrac{9x}{16}=81 \\
& \Rightarrow x=\dfrac{16\times 81}{9} \\
\end{align}\]
\[\Rightarrow x=\] Rs.144
Therefore, the total amount of money that was distributed is Rs.144.
Now, we have to find the amount of money obtained by B. So, substituting the obtained value of x in the expression of money obtained by B, we get,
Money obtained by B = \[\dfrac{144}{4}\] = Rs.36
So, the correct answer is “Option a”.
Note: One may note that we do not have to assume the amount of money obtained by A and B as different variables. It may confuse us. We just have to assume one variable and carry out our calculation using that assumption. Note that the amount of money obtained by C was given to us. That is why we equated it with the obtained expression for money obtained by C. Remember that the value of x is not our solution, we have to substitute it in the expression \[\dfrac{x}{4}\]. Sometimes in a hurry students just write the value of ‘x’ as the answer. So, the question must be read carefully.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE