Answer
Verified
446.1k+ views
Hint: Equality is the general relationship between two or more quantities. It basically tells the changes occurred when any of the quantity is changed.
In this question, we have been asked for the summation of the number of apples and the number of bananas that the customer bought by paying an amount of $Rs. 6.30 $. For this, we need to first derive an equation that will illustrate the relation between the cost price of the fruits for the customer.
Complete step-by-step answer:
Let the number of apples that the customer bought be $ x $ .
Let the number of bananas that the customer bought be $ y $ .
As the price of one apple is $Rs. 0.70 $ then, the total price of the apples that the customer bought will be calculated by multiplying the total number of apples and cost per apple is:
$ {C_a} = 0.70x $
Similarly, the price of one banana is $Rs. 0.50 $ then, the total price of the bananas that the customer bought will be calculated by multiplying the total number of bananas and cost per banana as: $ {C_b} = 0.50y $
According to the question, the total cost to the customer when he bought $ x $ apples and $ y $ bananas is $Rs. 6.30 $. So, we can write it as:
$
\Rightarrow {C_a} + {C_b} = 6.30 \\
\Rightarrow 0.70x + 0.50y = 6.30 \\
\Rightarrow 7x + 5y = 63 \\
$
Now, after carefully observing the above equation, we can see that $ x $ and $ y $ should be such that the equation $ 7x + 5y = 63 $ holds true.
To solve this type of equation where two variables are present but no other equation is available; the trial and error method is the only option that we opt for.
The equation $ 7x + 5y = 63 $ can also be written as $ y = \dfrac{{63 - 7x}}{5} $ .
It is also clear that the value $ y $ cannot be in decimals and it should be a whole number so, the value of $ y $ could be 1,2,3,4,.. and so on.
Now, calculate the value of $ y $ for different values of $ x $ so that the value of $ x $ should also be a whole number.
For $ x = 1 $ :
$ \Rightarrow y = \dfrac{{63 - 7}}{5} = \dfrac{{56}}{5} = 11.2 $
For $ x = 2 $ :
$
\Rightarrow y = \dfrac{{63 - (7 \times 2)}}{5} \\
= \dfrac{{63 - 14}}{5} = \dfrac{{49}}{5} \\
= 9.8 \\
$
For $ x = 3 $ :
$
\Rightarrow y = \dfrac{{63 - (7 \times 3)}}{5} \\
= \dfrac{{63 - 21}}{5} = \dfrac{{42}}{5} \\
= 8.4 \\
$
For $ x = 4 $ :
$
\Rightarrow y = \dfrac{{63 - (7 \times 4)}}{5} \\
= \dfrac{{63 - 28}}{5} = \dfrac{{35}}{5} \\
= 7 \\
$
For the value of $ x $ as 4, the value of $ y $ is 7 and both are now a whole number.
Hence, the number of apples and the bananas that the customer bought is 4 and 7 respectively.
The total number of apples and bananas that the customer bought is $ 7 + 4 = 11 $
Note: The quantity of fruits cannot be in decimal and it should be in whole numbers only. Here, only one equation is given with two variables and we need to investigate the numbers by trial and error method only.
In this question, we have been asked for the summation of the number of apples and the number of bananas that the customer bought by paying an amount of $Rs. 6.30 $. For this, we need to first derive an equation that will illustrate the relation between the cost price of the fruits for the customer.
Complete step-by-step answer:
Let the number of apples that the customer bought be $ x $ .
Let the number of bananas that the customer bought be $ y $ .
As the price of one apple is $Rs. 0.70 $ then, the total price of the apples that the customer bought will be calculated by multiplying the total number of apples and cost per apple is:
$ {C_a} = 0.70x $
Similarly, the price of one banana is $Rs. 0.50 $ then, the total price of the bananas that the customer bought will be calculated by multiplying the total number of bananas and cost per banana as: $ {C_b} = 0.50y $
According to the question, the total cost to the customer when he bought $ x $ apples and $ y $ bananas is $Rs. 6.30 $. So, we can write it as:
$
\Rightarrow {C_a} + {C_b} = 6.30 \\
\Rightarrow 0.70x + 0.50y = 6.30 \\
\Rightarrow 7x + 5y = 63 \\
$
Now, after carefully observing the above equation, we can see that $ x $ and $ y $ should be such that the equation $ 7x + 5y = 63 $ holds true.
To solve this type of equation where two variables are present but no other equation is available; the trial and error method is the only option that we opt for.
The equation $ 7x + 5y = 63 $ can also be written as $ y = \dfrac{{63 - 7x}}{5} $ .
It is also clear that the value $ y $ cannot be in decimals and it should be a whole number so, the value of $ y $ could be 1,2,3,4,.. and so on.
Now, calculate the value of $ y $ for different values of $ x $ so that the value of $ x $ should also be a whole number.
For $ x = 1 $ :
$ \Rightarrow y = \dfrac{{63 - 7}}{5} = \dfrac{{56}}{5} = 11.2 $
For $ x = 2 $ :
$
\Rightarrow y = \dfrac{{63 - (7 \times 2)}}{5} \\
= \dfrac{{63 - 14}}{5} = \dfrac{{49}}{5} \\
= 9.8 \\
$
For $ x = 3 $ :
$
\Rightarrow y = \dfrac{{63 - (7 \times 3)}}{5} \\
= \dfrac{{63 - 21}}{5} = \dfrac{{42}}{5} \\
= 8.4 \\
$
For $ x = 4 $ :
$
\Rightarrow y = \dfrac{{63 - (7 \times 4)}}{5} \\
= \dfrac{{63 - 28}}{5} = \dfrac{{35}}{5} \\
= 7 \\
$
For the value of $ x $ as 4, the value of $ y $ is 7 and both are now a whole number.
Hence, the number of apples and the bananas that the customer bought is 4 and 7 respectively.
The total number of apples and bananas that the customer bought is $ 7 + 4 = 11 $
Note: The quantity of fruits cannot be in decimal and it should be in whole numbers only. Here, only one equation is given with two variables and we need to investigate the numbers by trial and error method only.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE