Answer
Verified
449.4k+ views
Hint: To solve this question, i.e., to find sum of money invested. We will make the equation for the difference given between the interests of third year and first year using compound interest formula. In this we will put all the given values, and then after solving, we will get our required answer.
Complete step-by-step answer:
We have been given that a certain sum of money is invested at the rate of \[10\% \] per annum at compound interest, and the interest is compounded annually.
We have also been given the difference between the interests of third year and first year is ₹\[1,105,\] and we need to find the sum invested.
So, the given rate of interest \[ = {\text{ }}10\% \]
The sum of money is invested annually at compound interest, and the difference between interest of \[3rd\] and \[1st\] year\[ = \] ₹\[1,105\]
So, we will apply the compound interest formula mentioned below.
$\Rightarrow A = P{(1 + \dfrac{R}{{100}})^t}$
where, A \[ = \] final amount
P \[ = \] sum of money invested
R \[ = \] rate of interest
t \[ = \] time period for which the sum is invested
Now, we have been given the difference between interest of 3rd and 1st year, i.e.,
$\Rightarrow P{(1 + \dfrac{R}{{100}})^t} - P(1 + \dfrac{R}{{100}}) = I$
So, using the above formula and putting all the given values, we get
$
\Rightarrow P{(1 + \dfrac{{10}}{{100}})^3} - P(1 + \dfrac{{10}}{{100}}) = 1105 \\
\Rightarrow P[{(\dfrac{{11}}{{10}})^3} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331}}{{1000}} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331 - 1100}}{{1000}}] = 1105 \\
\Rightarrow P(\dfrac{{231}}{{1000}}) = 1105 \\
\Rightarrow P = \dfrac{{1105 \times 1000}}{{231}} \\
$
$\Rightarrow P = $ ₹$4783.5$
Thus, the sum invested was ₹$4783.5$.
Note: In the solution, we were asked about the compound interest. Compound Interest is the addition of interest to the sum or deposited money. In the question, we were given about the difference between interest of third year and interest of first year, that is why we have used the formula mentioned above in the solution.
Complete step-by-step answer:
We have been given that a certain sum of money is invested at the rate of \[10\% \] per annum at compound interest, and the interest is compounded annually.
We have also been given the difference between the interests of third year and first year is ₹\[1,105,\] and we need to find the sum invested.
So, the given rate of interest \[ = {\text{ }}10\% \]
The sum of money is invested annually at compound interest, and the difference between interest of \[3rd\] and \[1st\] year\[ = \] ₹\[1,105\]
So, we will apply the compound interest formula mentioned below.
$\Rightarrow A = P{(1 + \dfrac{R}{{100}})^t}$
where, A \[ = \] final amount
P \[ = \] sum of money invested
R \[ = \] rate of interest
t \[ = \] time period for which the sum is invested
Now, we have been given the difference between interest of 3rd and 1st year, i.e.,
$\Rightarrow P{(1 + \dfrac{R}{{100}})^t} - P(1 + \dfrac{R}{{100}}) = I$
So, using the above formula and putting all the given values, we get
$
\Rightarrow P{(1 + \dfrac{{10}}{{100}})^3} - P(1 + \dfrac{{10}}{{100}}) = 1105 \\
\Rightarrow P[{(\dfrac{{11}}{{10}})^3} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331}}{{1000}} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331 - 1100}}{{1000}}] = 1105 \\
\Rightarrow P(\dfrac{{231}}{{1000}}) = 1105 \\
\Rightarrow P = \dfrac{{1105 \times 1000}}{{231}} \\
$
$\Rightarrow P = $ ₹$4783.5$
Thus, the sum invested was ₹$4783.5$.
Note: In the solution, we were asked about the compound interest. Compound Interest is the addition of interest to the sum or deposited money. In the question, we were given about the difference between interest of third year and interest of first year, that is why we have used the formula mentioned above in the solution.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE