Answer
Verified
459k+ views
Hint: To solve this question, i.e., to find sum of money invested. We will make the equation for the difference given between the interests of third year and first year using compound interest formula. In this we will put all the given values, and then after solving, we will get our required answer.
Complete step-by-step answer:
We have been given that a certain sum of money is invested at the rate of \[10\% \] per annum at compound interest, and the interest is compounded annually.
We have also been given the difference between the interests of third year and first year is ₹\[1,105,\] and we need to find the sum invested.
So, the given rate of interest \[ = {\text{ }}10\% \]
The sum of money is invested annually at compound interest, and the difference between interest of \[3rd\] and \[1st\] year\[ = \] ₹\[1,105\]
So, we will apply the compound interest formula mentioned below.
$\Rightarrow A = P{(1 + \dfrac{R}{{100}})^t}$
where, A \[ = \] final amount
P \[ = \] sum of money invested
R \[ = \] rate of interest
t \[ = \] time period for which the sum is invested
Now, we have been given the difference between interest of 3rd and 1st year, i.e.,
$\Rightarrow P{(1 + \dfrac{R}{{100}})^t} - P(1 + \dfrac{R}{{100}}) = I$
So, using the above formula and putting all the given values, we get
$
\Rightarrow P{(1 + \dfrac{{10}}{{100}})^3} - P(1 + \dfrac{{10}}{{100}}) = 1105 \\
\Rightarrow P[{(\dfrac{{11}}{{10}})^3} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331}}{{1000}} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331 - 1100}}{{1000}}] = 1105 \\
\Rightarrow P(\dfrac{{231}}{{1000}}) = 1105 \\
\Rightarrow P = \dfrac{{1105 \times 1000}}{{231}} \\
$
$\Rightarrow P = $ ₹$4783.5$
Thus, the sum invested was ₹$4783.5$.
Note: In the solution, we were asked about the compound interest. Compound Interest is the addition of interest to the sum or deposited money. In the question, we were given about the difference between interest of third year and interest of first year, that is why we have used the formula mentioned above in the solution.
Complete step-by-step answer:
We have been given that a certain sum of money is invested at the rate of \[10\% \] per annum at compound interest, and the interest is compounded annually.
We have also been given the difference between the interests of third year and first year is ₹\[1,105,\] and we need to find the sum invested.
So, the given rate of interest \[ = {\text{ }}10\% \]
The sum of money is invested annually at compound interest, and the difference between interest of \[3rd\] and \[1st\] year\[ = \] ₹\[1,105\]
So, we will apply the compound interest formula mentioned below.
$\Rightarrow A = P{(1 + \dfrac{R}{{100}})^t}$
where, A \[ = \] final amount
P \[ = \] sum of money invested
R \[ = \] rate of interest
t \[ = \] time period for which the sum is invested
Now, we have been given the difference between interest of 3rd and 1st year, i.e.,
$\Rightarrow P{(1 + \dfrac{R}{{100}})^t} - P(1 + \dfrac{R}{{100}}) = I$
So, using the above formula and putting all the given values, we get
$
\Rightarrow P{(1 + \dfrac{{10}}{{100}})^3} - P(1 + \dfrac{{10}}{{100}}) = 1105 \\
\Rightarrow P[{(\dfrac{{11}}{{10}})^3} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331}}{{1000}} - \dfrac{{11}}{{10}}] = 1105 \\
\Rightarrow P[\dfrac{{1331 - 1100}}{{1000}}] = 1105 \\
\Rightarrow P(\dfrac{{231}}{{1000}}) = 1105 \\
\Rightarrow P = \dfrac{{1105 \times 1000}}{{231}} \\
$
$\Rightarrow P = $ ₹$4783.5$
Thus, the sum invested was ₹$4783.5$.
Note: In the solution, we were asked about the compound interest. Compound Interest is the addition of interest to the sum or deposited money. In the question, we were given about the difference between interest of third year and interest of first year, that is why we have used the formula mentioned above in the solution.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
If the coordinates of the points A B and C be 443 23 class 10 maths JEE_Main
If the mean of the set of numbers x1x2xn is bar x then class 10 maths JEE_Main
What is the meaning of celestial class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The term ISWM refers to A Integrated Solid Waste Machine class 10 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Which is the longest day and shortest night in the class 11 sst CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE