Answer
Verified
430.5k+ views
Hint: Every helical path has three distinct characteristics as radius, time period, and pitch. The helix pitch is the height of one complete helix turn, measured parallel to the helix axis. A double helix consists of two helices with the same axis (typically congruent), differentiated by a translation along the axis.
Formula Used: The radius of the helix is given by the following formula
\[{\text{r}} = \dfrac{{{\text{mv}}\sin \theta }}{{{\text{qB}}}}\]
Where
$\theta $ is the angle at which a charged particle enters into a uniform magnetic field with velocity
\[{\text{m}}\] is the mass of the particle
\[{\text{v}}\] is the velocity of the particle
\[{\text{q}}\] is the electric charge
\[{\text{B}}\] is the magnetic field
Complete Step-by-Step Solution:
According to the question, the following information is provided to us
The pitch of the helical path followed by the particle is ${\text{p}}$
The angle at which a charged particle enters into a uniform magnetic field with velocity, \[\theta = {45^ \circ }\]
The pitch is given by the equation
\[p = \dfrac{{2\pi mv}}{{qB}}\cos \theta \]
Which can be rewritten as
\[p = \dfrac{{2\pi P}}{{qB}}\cos \theta \]
Where
\[P\] is the momentum \[ = mv\]
Now, we will put the value of \[\theta = {45^ \circ }\] in the above equation to get
\[p = \dfrac{{2\pi P}}{{qB}}\cos {45^ \circ }\]
Now, the radius of the helix is given by
\[{\text{r}} = \dfrac{{{\text{mv}}\sin \theta }}{{{\text{qB}}}}\]
Which can be rewritten as
\[{\text{r}} = \dfrac{{{\text{P}}\sin \theta }}{{{\text{qB}}}}\]
Now, we will put the value of \[\theta = {45^ \circ }\] in the above equation to get
\[{\text{r}} = \dfrac{{{\text{P}}\sin {{45}^ \circ }}}{{{\text{qB}}}}\]
Also, \[\sin {45^ \circ } = \cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
Upon comparing the final results of pitch and radius of helix, we can conclude that
\[p = 2\pi r\]
So, we get
\[\therefore r = \dfrac{p}{{2\pi }}\]
Hence, the correct option is (C.)
Note: When a velocity component is present along the direction of magnetic field, its magnitude remains unchanged throughout the motion, as there is no effect of a magnetic field on it. The movement is also circular in nature because of the perpendicular velocity component.
Formula Used: The radius of the helix is given by the following formula
\[{\text{r}} = \dfrac{{{\text{mv}}\sin \theta }}{{{\text{qB}}}}\]
Where
$\theta $ is the angle at which a charged particle enters into a uniform magnetic field with velocity
\[{\text{m}}\] is the mass of the particle
\[{\text{v}}\] is the velocity of the particle
\[{\text{q}}\] is the electric charge
\[{\text{B}}\] is the magnetic field
Complete Step-by-Step Solution:
According to the question, the following information is provided to us
The pitch of the helical path followed by the particle is ${\text{p}}$
The angle at which a charged particle enters into a uniform magnetic field with velocity, \[\theta = {45^ \circ }\]
The pitch is given by the equation
\[p = \dfrac{{2\pi mv}}{{qB}}\cos \theta \]
Which can be rewritten as
\[p = \dfrac{{2\pi P}}{{qB}}\cos \theta \]
Where
\[P\] is the momentum \[ = mv\]
Now, we will put the value of \[\theta = {45^ \circ }\] in the above equation to get
\[p = \dfrac{{2\pi P}}{{qB}}\cos {45^ \circ }\]
Now, the radius of the helix is given by
\[{\text{r}} = \dfrac{{{\text{mv}}\sin \theta }}{{{\text{qB}}}}\]
Which can be rewritten as
\[{\text{r}} = \dfrac{{{\text{P}}\sin \theta }}{{{\text{qB}}}}\]
Now, we will put the value of \[\theta = {45^ \circ }\] in the above equation to get
\[{\text{r}} = \dfrac{{{\text{P}}\sin {{45}^ \circ }}}{{{\text{qB}}}}\]
Also, \[\sin {45^ \circ } = \cos {45^ \circ } = \dfrac{1}{{\sqrt 2 }}\]
Upon comparing the final results of pitch and radius of helix, we can conclude that
\[p = 2\pi r\]
So, we get
\[\therefore r = \dfrac{p}{{2\pi }}\]
Hence, the correct option is (C.)
Note: When a velocity component is present along the direction of magnetic field, its magnitude remains unchanged throughout the motion, as there is no effect of a magnetic field on it. The movement is also circular in nature because of the perpendicular velocity component.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE