Answer
Verified
396.3k+ views
Hint:To solve this question, we need to look for using the concept of centripetal force and apply it along with the concept of force on a charge. The concept of conservation of energy is also useful in this problem.
Complete step by step answer:
It is given that the charged particle is accelerated through a potential difference of $24\times{10^3}\,V$.And as a result it acquires a speed of $2\times {10^6}\,m/s$. Now from the question we can easily understand that the centripetal force will be equal to the force on the charge and we can use this equation for further parts of the question. Therefore,
$\dfrac{m{{v}^{2}}}{r}=qVB$ ,
simplifying this equation we get the following
$r=\dfrac{mv}{qB}$..........................$\left( 1 \right)$
Moving ahead, with the help of conservation of energy theorem, we can say that the kinetic energy of the charge initially will be equal to the potential energy of the charge after it injects into the magnetic field. Therefore, according to conservation of energy theorem,
$\dfrac{1}{2}m{{v}^{2}}=q{{V}_{B}}$
After simplifying, we get that
$\dfrac{1}{q}=\dfrac{2{{V}_{B}}}{m{{v}^{2}}}$.................$\left( 2 \right)$
Now using both of the equation and putting the value of $\dfrac{1}{q}$ in the first equation
$r=\dfrac{2{{V}_{B}}}{m{{v}^{2}}}\times \dfrac{mv}{B}$
we can get that
$r=\dfrac{2{{V}_{B}}}{BV}$
Now, putting the values we get the answer
\[r=\dfrac{\left( 2\times 24 \times{10^3}\right)}{\left( 2\times 0.2\times {{10}^{6}} \right)}\\
\Rightarrow r=\dfrac{48\times{10^3}}{0.4\times{10^6}}\\
\Rightarrow r=0.120\,m\\
\therefore r=12\,cm\]
Therefore the radius of the circle described in the magnetic field is $12\,cm$.
Note:The question says that the charged particle is inserted perpendicularly, so we solve the question as above, but if the question had any other conditions like the charge is inserted parallel or at a given angle then the solution would have changed slightly.
Complete step by step answer:
It is given that the charged particle is accelerated through a potential difference of $24\times{10^3}\,V$.And as a result it acquires a speed of $2\times {10^6}\,m/s$. Now from the question we can easily understand that the centripetal force will be equal to the force on the charge and we can use this equation for further parts of the question. Therefore,
$\dfrac{m{{v}^{2}}}{r}=qVB$ ,
simplifying this equation we get the following
$r=\dfrac{mv}{qB}$..........................$\left( 1 \right)$
Moving ahead, with the help of conservation of energy theorem, we can say that the kinetic energy of the charge initially will be equal to the potential energy of the charge after it injects into the magnetic field. Therefore, according to conservation of energy theorem,
$\dfrac{1}{2}m{{v}^{2}}=q{{V}_{B}}$
After simplifying, we get that
$\dfrac{1}{q}=\dfrac{2{{V}_{B}}}{m{{v}^{2}}}$.................$\left( 2 \right)$
Now using both of the equation and putting the value of $\dfrac{1}{q}$ in the first equation
$r=\dfrac{2{{V}_{B}}}{m{{v}^{2}}}\times \dfrac{mv}{B}$
we can get that
$r=\dfrac{2{{V}_{B}}}{BV}$
Now, putting the values we get the answer
\[r=\dfrac{\left( 2\times 24 \times{10^3}\right)}{\left( 2\times 0.2\times {{10}^{6}} \right)}\\
\Rightarrow r=\dfrac{48\times{10^3}}{0.4\times{10^6}}\\
\Rightarrow r=0.120\,m\\
\therefore r=12\,cm\]
Therefore the radius of the circle described in the magnetic field is $12\,cm$.
Note:The question says that the charged particle is inserted perpendicularly, so we solve the question as above, but if the question had any other conditions like the charge is inserted parallel or at a given angle then the solution would have changed slightly.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE