Answer
Verified
472.5k+ views
Hint:Since the chess board is a square and it actually consists of $64$ equals square boxes. The side length of each square box can be calculated since its area is given. Also there is a $2cm$ wide border on all the sides of the chess board. So, to calculate the complete length of the board, the length of borders will also be included.
Complete step-by-step answer:
The chess board contains $64$ equal squares. We know that the overall shape of the chess board is also a square.
Therefore, the chess board has $8 \times 8$ small squares.
It is mentioned in the question that the area of each small square is $6.25c{m^2}$.
We know that the area of a square is equal to the square of its side length
${\left( {side} \right)^2} = area$
$side\,length = \sqrt {area} $
$\therefore $ The side length of each of the small squares is equal to the square root of its area
$side = \sqrt {6.25} $
$side = 2.5cm$ $ \to \left( 1 \right)$
Now, it is also given that the chess board has a border in width $2cm$
Therefore, the side length of the whole chess board will be equal to the sum of length of small squares on one side and the width of the border on the two sides.
$Total\,length = 8 \times length\,of\,one\,small\,square + 2 \times width\,of\,the\,\,border$
$Total\,length = 8 \times 2.5 + 2 \times 2$
$Total\,length = 20 + 4 = 24cm$
So, the correct answer is “Option B”.
Note:It should be noted that borders will exist on the both sides when the total length of the chess board is to be considered.Each statement given in the question needs to be understood carefully while converting them in mathematical form.
Complete step-by-step answer:
The chess board contains $64$ equal squares. We know that the overall shape of the chess board is also a square.
Therefore, the chess board has $8 \times 8$ small squares.
It is mentioned in the question that the area of each small square is $6.25c{m^2}$.
We know that the area of a square is equal to the square of its side length
${\left( {side} \right)^2} = area$
$side\,length = \sqrt {area} $
$\therefore $ The side length of each of the small squares is equal to the square root of its area
$side = \sqrt {6.25} $
$side = 2.5cm$ $ \to \left( 1 \right)$
Now, it is also given that the chess board has a border in width $2cm$
Therefore, the side length of the whole chess board will be equal to the sum of length of small squares on one side and the width of the border on the two sides.
$Total\,length = 8 \times length\,of\,one\,small\,square + 2 \times width\,of\,the\,\,border$
$Total\,length = 8 \times 2.5 + 2 \times 2$
$Total\,length = 20 + 4 = 24cm$
So, the correct answer is “Option B”.
Note:It should be noted that borders will exist on the both sides when the total length of the chess board is to be considered.Each statement given in the question needs to be understood carefully while converting them in mathematical form.
Recently Updated Pages
What is the maximum resistance which can be made using class 10 physics CBSE
Arrange the following elements in the order of their class 10 chemistry CBSE
In the following figure the value of resistor to be class 10 physics CBSE
The magnetic induction at point P which is at a distance class 10 physics CBSE
According to Mendeleevs Periodic Law the elements were class 10 chemistry CBSE
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Trending doubts
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Name five important trees found in the tropical evergreen class 10 social studies CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Change the following sentences into negative and interrogative class 10 english CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE