
A chess game between \[X\] and \[Y\] is won by whoever first wins a total of 2 games. \[X\]’s chances of winning, drawing or losing a particular game are\[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] . The games are independent. Then find the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
A. \[\dfrac{1}{6}\]
B. \[\dfrac{1}{4}\]
C. \[\dfrac{1}{2}\]
D. None of these
Answer
141.6k+ views
Hint: Use the given probabilities of winning, drawing, or losing a particular game of the player \[X\] to calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\]. Then calculate the possible ways where player \[Y\] wins the match in the \[{4^{th}}\] game. In the end, substitute the values of the probabilities in that equation and simplify it to get the required answer.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Recently Updated Pages
Difference Between Mutually Exclusive and Independent Events

Difference Between Area and Volume

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

JEE Main Maths Paper Pattern 2025 – Marking, Sections & Tips

Sign up for JEE Main 2025 Live Classes - Vedantu

JEE Main 2025 Helpline Numbers - Center Contact, Phone Number, Address

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility, & More

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2025: Derivation of Equation of Trajectory in Physics

Electric Field Due to Uniformly Charged Ring for JEE Main 2025 - Formula and Derivation

Learn About Angle Of Deviation In Prism: JEE Main Physics 2025

Degree of Dissociation and Its Formula With Solved Example for JEE

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

JEE Advanced Weightage 2025 Chapter-Wise for Physics, Maths and Chemistry

JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics

Electron Gain Enthalpy and Electron Affinity for JEE

Electrical Field of Charged Spherical Shell - JEE
