A chess game between \[X\] and \[Y\] is won by whoever first wins a total of 2 games. \[X\]’s chances of winning, drawing or losing a particular game are\[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] . The games are independent. Then find the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
A. \[\dfrac{1}{6}\]
B. \[\dfrac{1}{4}\]
C. \[\dfrac{1}{2}\]
D. None of these
Answer
Verified
116.4k+ views
Hint: Use the given probabilities of winning, drawing, or losing a particular game of the player \[X\] to calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\]. Then calculate the possible ways where player \[Y\] wins the match in the \[{4^{th}}\] game. In the end, substitute the values of the probabilities in that equation and simplify it to get the required answer.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Recently Updated Pages
How to find Oxidation Number - Important Concepts for JEE
How Electromagnetic Waves are Formed - Important Concepts for JEE
Electrical Resistance - Important Concepts and Tips for JEE
Average Atomic Mass - Important Concepts and Tips for JEE
Chemical Equation - Important Concepts and Tips for JEE
Concept of CP and CV of Gas - Important Concepts and Tips for JEE
Trending doubts
JEE Main 2025: Application Form (Out), Exam Dates (Released), Eligibility & More
JEE Main Login 2045: Step-by-Step Instructions and Details
JEE Main Chemistry Question Paper with Answer Keys and Solutions
Learn About Angle Of Deviation In Prism: JEE Main Physics 2025
JEE Main 2025: Conversion of Galvanometer Into Ammeter And Voltmeter in Physics
JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!
Other Pages
NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines
NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series
NCERT Solutions for Class 11 Maths Chapter 10 Conic Sections
NCERT Solutions for Class 11 Maths Chapter 13 Statistics
NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs