
A chess game between \[X\] and \[Y\] is won by whoever first wins a total of 2 games. \[X\]’s chances of winning, drawing or losing a particular game are\[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] . The games are independent. Then find the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
A. \[\dfrac{1}{6}\]
B. \[\dfrac{1}{4}\]
C. \[\dfrac{1}{2}\]
D. None of these
Answer
128.1k+ views
Hint: Use the given probabilities of winning, drawing, or losing a particular game of the player \[X\] to calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\]. Then calculate the possible ways where player \[Y\] wins the match in the \[{4^{th}}\] game. In the end, substitute the values of the probabilities in that equation and simplify it to get the required answer.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Formula used:
Combination formula: \[{}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}\]
Complete step by step solution:
The given probabilities of winning, drawing, or losing a particular game of player \[X\] are \[\dfrac{1}{6}, \dfrac{1}{3}, \dfrac{1}{2}\] respectively.
Let’s calculate the probabilities of winning, drawing, or losing a particular game of the player \[Y\].
When the player \[X\] wins, the player \[Y\] loses the match.
So, \[P\left( {Y loose} \right) = \dfrac{1}{6}\]
When the player \[X\] loses, the player \[Y\] wins the match.
So, \[P\left( {Y win} \right) = \dfrac{1}{2}\]
And the probability of drawing the match is, \[P\left( {Draw} \right) = \dfrac{1}{3}\].
Let \[P\left( E \right)\] be the probability that \[Y\] wins that match in the \[{4^{th}}\] game.
So, the player \[Y\] wins that match in the \[{4^{th}}\] game is fixed.
The possible ways are,
\[\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) \] and \[\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right)\]
In a first way, the results of the first 3 games can be arranged in \[3!\] ways.
In a second way, the possibility of the drawing the game occurs 2 times.
Therefore, the probability that \[Y\] wins that match in the \[{4^{th}}\] game is
\[P\left( E \right) = 3! \times P\left( {\left( {X win} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right) + {}^3{C_2} \times P\left( {\left( {Draw} \right) \left( {Draw} \right) \left( {Y win} \right)\left( {Y win} \right) } \right)\]
\[ \Rightarrow P\left( E \right) = 6 \times \left( {\dfrac{1}{6} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2}} \right) + \dfrac{{3!}}{{1! \times 2!}} \times \left( {\dfrac{1}{3} \times \dfrac{1}{3} \times \dfrac{1}{2} \times \dfrac{1}{2} } \right)\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{{12}} + \dfrac{1}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{2}{{12}}\]
\[ \Rightarrow P\left( E \right) = \dfrac{1}{6}\]
Hence the correct option is A.
Note: Always remember to calculate the number of ways of arranging the possible result of each game. Students often forget to calculate the arrangements of the results and directly calculate the probability.
Recently Updated Pages
Difference Between Vapor and Gas: JEE Main 2024

Area of an Octagon Formula - Explanation, and FAQs

Difference Between Solute and Solvent: JEE Main 2024

Absolute Pressure Formula - Explanation, and FAQs

Carbon Dioxide Formula - Definition, Uses and FAQs

Charle's Law Formula - Definition, Derivation and Solved Examples

Trending doubts
JEE Main 2025 Session 2: Application Form (Out), Exam Dates (Released), Eligibility & More

JEE Main Login 2045: Step-by-Step Instructions and Details

JEE Main Exam Marking Scheme: Detailed Breakdown of Marks and Negative Marking

JEE Main 2023 January 24 Shift 2 Question Paper with Answer Keys & Solutions

JEE Mains 2025 Correction Window Date (Out) – Check Procedure and Fees Here!

JEE Main Participating Colleges 2024 - A Complete List of Top Colleges

Other Pages
JEE Advanced Marks vs Ranks 2025: Understanding Category-wise Qualifying Marks and Previous Year Cut-offs

NCERT Solutions for Class 11 Maths Chapter 9 Straight Lines

JEE Advanced 2025: Dates, Registration, Syllabus, Eligibility Criteria and More

NCERT Solutions for Class 11 Maths Chapter 12 Limits and Derivatives

NCERT Solutions for Class 11 Maths Chapter 8 Sequences and Series

NCERT Solutions for Class 11 Maths Chapter 13 Statistics
