Answer
Verified
400.6k+ views
Hint – Length of the lines joining the end points of chords of a circle to the centre of a circle are radius , Thus the triangle formed here is the right angle isosceles triangle (given) . Clearly PGT can be used here .
The pictorial representation of the given problem is shown above.
Let AB be the chord of the circle.
O is the center of the circle, chord AB subtends a right angle at its center.
$\therefore \angle AOB = {90^0}$
OA = OB = 10 cm radius of the circle.
Now we have to find out the length of the chord AB.
So, apply Pythagoras theorem in triangle AOB
$
\Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Base}}} \right)^2} + {\left( {{\text{Perpendicular}}} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = {\left( {OB} \right)^2} + {\left( {OA} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = {10^2} + {10^2} = 100 + 100 = 200 \\
\Rightarrow AB = \sqrt {200} = 10\sqrt 2 {\text{ cm}} \\
$
So, the length of the chord is $10\sqrt 2 {\text{ cm}}$.
Hence, option (b) is correct.
Note – In such types of questions first draw the pictorial representation of the given problem as above then always remember the property of Pythagoras Theorem which is stated above, then using this property calculate the length of the chord which is the required answer.
The pictorial representation of the given problem is shown above.
Let AB be the chord of the circle.
O is the center of the circle, chord AB subtends a right angle at its center.
$\therefore \angle AOB = {90^0}$
OA = OB = 10 cm radius of the circle.
Now we have to find out the length of the chord AB.
So, apply Pythagoras theorem in triangle AOB
$
\Rightarrow {\left( {{\text{Hypotenuse}}} \right)^2} = {\left( {{\text{Base}}} \right)^2} + {\left( {{\text{Perpendicular}}} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = {\left( {OB} \right)^2} + {\left( {OA} \right)^2} \\
\Rightarrow {\left( {AB} \right)^2} = {10^2} + {10^2} = 100 + 100 = 200 \\
\Rightarrow AB = \sqrt {200} = 10\sqrt 2 {\text{ cm}} \\
$
So, the length of the chord is $10\sqrt 2 {\text{ cm}}$.
Hence, option (b) is correct.
Note – In such types of questions first draw the pictorial representation of the given problem as above then always remember the property of Pythagoras Theorem which is stated above, then using this property calculate the length of the chord which is the required answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE