A circle and a parabola intersect in four points; show that the algebraic sum of the ordinates of the four points is zero.
Also show that the line joining one pair of these four points and the line joining the other pair are equally inclined to the axis.
Answer
Verified
489.3k+ views
Hint: Assume any four points of the form $\left( a{{t}^{2}},2at \right)$ parabola intersect. Prove that the sum of their ordinate, ${{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}}=0$. Then use the slope formula to find slope of $1\ and\ 2$, and point $3\ and\ 4$. Equate them and prove they are equally inclined to the axis.
Complete step-by-step solution -
Let us consider that the circle is of the form,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0............\left( 1 \right)$
Let the parabola be of the form $:{{y}^{2}}=4ax..........\left( 2 \right)$
It’s told that the circle and parabola intersect at $4$ points.
Let us take any point on the parabola, which is of the form$\left( a{{t}^{2}},2at \right)$
i.e., $x=a{{t}^{2}},y=2at..........\left( 3 \right)$
The point $P$ of parabola represent the parametric coordinates $\left( a{{t}^{2}},2at \right)$
Here, Vertex $=A\left( 0,0 \right)$
Focus $=S\left( a,0 \right)$
Equation of directrix $\Rightarrow x=-a$
Equation of axis $\Rightarrow y=0$
Length of Latus rectum $=4a$
Focal distance of Point $\left( x,y \right)=x+a$ .
Now substituting $\left( 3 \right)$ in $\left( 1 \right)$
\[\begin{align}
& {{\left( a{{t}^{2}} \right)}^{2}}+{{\left( 2at \right)}^{2}}+2g\left( a{{t}^{2}} \right)+2f\left( 2at \right)+c=0 \\
& \Rightarrow {{a}^{2}}{{t}^{4}}+\underline{4{{a}^{2}}{{t}^{2}}+2ga{{t}^{2}}}+4fat+c=0 \\
& {{a}^{2}}{{t}^{4}}+{{t}^{2}}\left( 4{{a}^{2}}+2ag \right)+4fat+c=0............\left( 4 \right) \\
\end{align}\]
Let us consider the roots of $4$ points where circle and parabola meets as ${{t}_{1,}}{{t}_{2,}}{{t}_{3,}}{{t}_{p}}.$
The sum of roots is always equal to zero.
i.e. \[{{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}}=0\]
point $1\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ ; point $2\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$
point $3\left( a{{t}_{3}}^{2},2a{{t}_{3}} \right)$; point $4\left( a{{t}_{4}}^{2},2a{{t}_{4}} \right)$
The sum of the ordinate of the point \[=2a\left( {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}} \right)\]
(i.e. $y-ordinate$ )$=2a\times 0=0$
Now, let us find the slope of points $1$ and $2$ , the points are $\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ and $\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$
Slope $=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\Rightarrow $ Formula to find slope
$\therefore $ slope of point $1$ and $2$$=\left| \dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{a{{t}_{2}}^{2}-a{{t}_{1}}^{2}} \right|$
By simplifying this, ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
\[\left| \dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a({{t}_{2}}^{2}-{{t}_{1}}^{2})} \right|=\left| \dfrac{2{a}{\left( {{t}_{2}}-{{t}_{1}} \right)}}{{a}{\left( {{t}_{2}}-{{t}_{1}} \right)}\left( {{t}_{2}}+{{t}_{1}} \right)} \right|\]
Cancel out the like terms on the above equation
$\therefore $ slope $=\left| \dfrac{2}{{{t}_{2}}+{{t}_{1}}} \right|..........\left( 5 \right)$
Similarly the slope of other two points $3$ and $4$
i.e., $\left( a{{t}_{3}}^{2},2a{{t}_{3}} \right)$ and $\left( a{{t}_{4}}^{2},2at4 \right)=\left| \dfrac{2}{{{t}_{3}}+{{t}_{4}}} \right|...........\left( 6 \right)$
Now equate $\left( 5 \right)=\left( 6 \right)$
$\left| \dfrac{2}{{{t}_{1}}+{{t}_{2}}} \right|=\left| \dfrac{2}{{{t}_{3}}+{{t}_{4}}} \right|\Rightarrow \dfrac{2}{{{t}_{1}}+{{t}_{2}}}=-\left( \dfrac{2}{{{t}_{3}}+{{t}_{4}}} \right)$
By simplifying the equation
${{t}_{3}}+{{t}_{4}}=-\left( {{t}_{1}}+{{t}_{2}} \right)$
$\Rightarrow {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}}=0$ , this was proved earlier
$\therefore $ The lines are equally inclined to the axis.
Note: From both the first set and second set of the question, we need to prove that the sums of roots of coordinate are zero, i.e., ${{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}}=0$
Complete step-by-step solution -
Let us consider that the circle is of the form,
${{x}^{2}}+{{y}^{2}}+2gx+2fy+c=0............\left( 1 \right)$
Let the parabola be of the form $:{{y}^{2}}=4ax..........\left( 2 \right)$
It’s told that the circle and parabola intersect at $4$ points.
Let us take any point on the parabola, which is of the form$\left( a{{t}^{2}},2at \right)$
i.e., $x=a{{t}^{2}},y=2at..........\left( 3 \right)$
The point $P$ of parabola represent the parametric coordinates $\left( a{{t}^{2}},2at \right)$
Here, Vertex $=A\left( 0,0 \right)$
Focus $=S\left( a,0 \right)$
Equation of directrix $\Rightarrow x=-a$
Equation of axis $\Rightarrow y=0$
Length of Latus rectum $=4a$
Focal distance of Point $\left( x,y \right)=x+a$ .
Now substituting $\left( 3 \right)$ in $\left( 1 \right)$
\[\begin{align}
& {{\left( a{{t}^{2}} \right)}^{2}}+{{\left( 2at \right)}^{2}}+2g\left( a{{t}^{2}} \right)+2f\left( 2at \right)+c=0 \\
& \Rightarrow {{a}^{2}}{{t}^{4}}+\underline{4{{a}^{2}}{{t}^{2}}+2ga{{t}^{2}}}+4fat+c=0 \\
& {{a}^{2}}{{t}^{4}}+{{t}^{2}}\left( 4{{a}^{2}}+2ag \right)+4fat+c=0............\left( 4 \right) \\
\end{align}\]
Let us consider the roots of $4$ points where circle and parabola meets as ${{t}_{1,}}{{t}_{2,}}{{t}_{3,}}{{t}_{p}}.$
The sum of roots is always equal to zero.
i.e. \[{{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}}=0\]
point $1\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ ; point $2\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$
point $3\left( a{{t}_{3}}^{2},2a{{t}_{3}} \right)$; point $4\left( a{{t}_{4}}^{2},2a{{t}_{4}} \right)$
The sum of the ordinate of the point \[=2a\left( {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}} \right)\]
(i.e. $y-ordinate$ )$=2a\times 0=0$
Now, let us find the slope of points $1$ and $2$ , the points are $\left( a{{t}_{1}}^{2},2a{{t}_{1}} \right)$ and $\left( a{{t}_{2}}^{2},2a{{t}_{2}} \right)$
Slope $=\dfrac{{{y}_{2}}-{{y}_{1}}}{{{x}_{2}}-{{x}_{1}}}\Rightarrow $ Formula to find slope
$\therefore $ slope of point $1$ and $2$$=\left| \dfrac{2a{{t}_{2}}-2a{{t}_{1}}}{a{{t}_{2}}^{2}-a{{t}_{1}}^{2}} \right|$
By simplifying this, ${{a}^{2}}-{{b}^{2}}=\left( a-b \right)\left( a+b \right)$
\[\left| \dfrac{2a\left( {{t}_{2}}-{{t}_{1}} \right)}{a({{t}_{2}}^{2}-{{t}_{1}}^{2})} \right|=\left| \dfrac{2{a}{\left( {{t}_{2}}-{{t}_{1}} \right)}}{{a}{\left( {{t}_{2}}-{{t}_{1}} \right)}\left( {{t}_{2}}+{{t}_{1}} \right)} \right|\]
Cancel out the like terms on the above equation
$\therefore $ slope $=\left| \dfrac{2}{{{t}_{2}}+{{t}_{1}}} \right|..........\left( 5 \right)$
Similarly the slope of other two points $3$ and $4$
i.e., $\left( a{{t}_{3}}^{2},2a{{t}_{3}} \right)$ and $\left( a{{t}_{4}}^{2},2at4 \right)=\left| \dfrac{2}{{{t}_{3}}+{{t}_{4}}} \right|...........\left( 6 \right)$
Now equate $\left( 5 \right)=\left( 6 \right)$
$\left| \dfrac{2}{{{t}_{1}}+{{t}_{2}}} \right|=\left| \dfrac{2}{{{t}_{3}}+{{t}_{4}}} \right|\Rightarrow \dfrac{2}{{{t}_{1}}+{{t}_{2}}}=-\left( \dfrac{2}{{{t}_{3}}+{{t}_{4}}} \right)$
By simplifying the equation
${{t}_{3}}+{{t}_{4}}=-\left( {{t}_{1}}+{{t}_{2}} \right)$
$\Rightarrow {{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}}=0$ , this was proved earlier
$\therefore $ The lines are equally inclined to the axis.
Note: From both the first set and second set of the question, we need to prove that the sums of roots of coordinate are zero, i.e., ${{t}_{1}}+{{t}_{2}}+{{t}_{3}}+{{t}_{4}}=0$
Recently Updated Pages
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
How do you arrange NH4 + BF3 H2O C2H2 in increasing class 11 chemistry CBSE
Is H mCT and q mCT the same thing If so which is more class 11 chemistry CBSE
What are the possible quantum number for the last outermost class 11 chemistry CBSE
Is C2 paramagnetic or diamagnetic class 11 chemistry CBSE
Trending doubts
The correct order of melting point of 14th group elements class 11 chemistry CBSE
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
What is the specific heat capacity of ice water and class 11 physics CBSE
Define least count of vernier callipers How do you class 11 physics CBSE
What is the chemical name of Iron class 11 chemistry CBSE
The dimensional formula of dielectric strength A M1L1T2Q class 11 physics CBSE