
A circle has its centre in the first quadrant and passes through the points of intersection of the lines ‘x = 2’ and ‘y = 3’. If it makes intercepts of 3 and 4 units on these lines respectively, its equation is
(a) ${{x}^{2}}+{{y}^{2}}-3x-5y+8=0$
(b) ${{x}^{2}}+{{y}^{2}}-4x-6y+13=0$
(c) ${{x}^{2}}+{{y}^{2}}-6x-8y+23=0$
(d)${{x}^{2}}+{{y}^{2}}-8x-9y+30=0$
Answer
578.4k+ views
Hint: First consider the centre of the circle as (a, b) so the general equation of the circle will be ${{x}^{2}}+{{y}^{2}}-2ax-2by+c=0$, then put the values of $x,y$ and put it back to the main equation and substitute the value of ‘c’ in terms of ‘a’ and ‘b’ . Then use the x-intercept and then find the values of ‘b’. Similarly using y-intercept find the value of ‘a’.
Complete step by step solution:
Now, let’s consider a circle with centre be (a, b).
So the equation of circle will be,
${{x}^{2}}+{{y}^{2}}-2ax-2by+c=0...........(1)$
In the question it is given that the circle passes through (2,3).
Therefore, substituting x=2 and y=3 respectively in the equation (1) we get,
${{2}^{2}}+{{3}^{2}}-2a\times 2-2b\times 3+c=0$
$\begin{align}
& \Rightarrow 13-4a-6b+c=0 \\
& \therefore c=4a+6b-13 \\
\end{align}$
So now let’s put back value of c in the equation (1) we get,
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0.........(2)$
Now we will find intercept on line x=2, y=3 respectively.
By substituting x=2 in the equation (1) we get,
$4+{{y}^{2}}-4a-2by+(4a+6b-13)=0..........(3)$
In the equation (2) let ${{y}_{1}}$,${{y}_{2}}$be the roots. So, from equation (3),
Sum of the roots will be,
${{y}_{1}}+{{y}_{2}}=2b........(4)$
Product of the roots will be,
${{y}_{1}}{{y}_{2}}=6b-9..........(5)$
Now as we know that length of intercept is (${{y}_{1}}-{{y}_{2}}$), so we will use the identity which is,
$a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
${{y}_{1}}-{{y}_{2}}$=$\sqrt{{{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}-4{{y}_{1}}{{y}_{2}}}$
Now we will substitute the values of $\left( {{y}_{1}}+{{y}_{2}} \right)$and ${{y}_{1}}{{y}_{2}}$to find the value of values of ‘b’ as we are given the value of ${{y}_{1}}-{{y}_{2}}$which is 3.
So,
\[{{3}^{2}}={{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}-4{{y}_{1}}{{y}_{2}}\]
Substituting the values of equation (4) and (5), we get
$\Rightarrow 9={{\left( 2b \right)}^{2}}-4\left( 6b-9 \right)$
$\Rightarrow 4{{b}^{2}}-24b+27=0$
We will solve the quadratic equation. Now by splitting the middle term, we get
$\Rightarrow 4{{b}^{2}}-6b-18b+27=0$
$\Rightarrow 2b(2b-3)-9(2b-3)=0$
\[\begin{align}
& \Rightarrow (2b-9)(2b-3)=0 \\
& \Rightarrow 2b-9=0,2b-3=0 \\
& \Rightarrow 2b=9,2b=3 \\
& \Rightarrow b=\dfrac{9}{2},b=\dfrac{3}{2} \\
\end{align}\]
Hence the values of b is $\dfrac{9}{2}$ or $\dfrac{3}{2}$.
By substituting the value of y =3 in the equation (2) we get,
${{x}^{2}}+9-2ax-6b+(4a+6b-13)=0$
${{x}^{2}}-2ax+4a-4=0.........(6)$
In equation (6) let ${{x}_{1}}$,${{x}_{2}}$ be the roots ,
Sum of the roots will be,
${{x}_{1}}+{{x}_{2}}=2a......(7)$
Product of the roots will be
${{x}_{1}}{{x}_{2}}=(4a-4).........(8)$
Now as we know the length of intercept is $({{x}_{1}}-{{x}_{2}})$, so we will use the identity which is ,
$a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
\[({{x}_{1}}-{{x}_{2}})=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}{{x}_{2}}}\]
Now we will substitute $({{x}_{1}}+{{x}_{2}})$and ${{x}_{1}}{{x}_{2}}$to find the value or values of a as we are given the value of $({{x}_{1}}-{{x}_{2}})=4$
So,
$4={{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}{{x}_{2}}$
$\Rightarrow 4={{(2a)}^{2}}-4(4a-4)$
$\Rightarrow 4={{a}^{2}}-(4a-4)$
$\Rightarrow {{a}^{2}}-4a=0$
$\Rightarrow a(a-4)=0$
Here the value of a is 0 or 4.
So now there are 4 such sets of equation can be made by the sets of values of (a,b) which are \[\left( 0,\dfrac{3}{2} \right),\left( 0,\dfrac{9}{2} \right),\left( 4,\dfrac{3}{2} \right)\] and $\left( 4,\dfrac{9}{2} \right)$.
For $\left( 0,\dfrac{3}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(0)-2y\times \dfrac{3}{2}+(4(0)+6\times \dfrac{3}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-3y+(-4)=0$
For $\left( 0,\dfrac{9}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(0)-2y\times \dfrac{9}{2}+(4(0)+6\times \dfrac{9}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-9y+14=0$
For $\left( 4,\dfrac{3}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(4)-2y\times \dfrac{3}{2}+(4(4)+6\times \dfrac{3}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-8x-3y+12=0$
For $\left( 4,\dfrac{9}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(4)-2y\times \dfrac{9}{2}+(4(4)+6\times \dfrac{9}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-8x-9y+30=0$
Only one equation of the pair$\left( 4,\dfrac{9}{2} \right)$ is available in the option.
So, the answer is option (d).
Note: Here the difficulty or confusion a student can face is putting the value of c back into the equation and also selecting the correct values of a and b.
Complete step by step solution:
Now, let’s consider a circle with centre be (a, b).
So the equation of circle will be,
${{x}^{2}}+{{y}^{2}}-2ax-2by+c=0...........(1)$
In the question it is given that the circle passes through (2,3).
Therefore, substituting x=2 and y=3 respectively in the equation (1) we get,
${{2}^{2}}+{{3}^{2}}-2a\times 2-2b\times 3+c=0$
$\begin{align}
& \Rightarrow 13-4a-6b+c=0 \\
& \therefore c=4a+6b-13 \\
\end{align}$
So now let’s put back value of c in the equation (1) we get,
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0.........(2)$
Now we will find intercept on line x=2, y=3 respectively.
By substituting x=2 in the equation (1) we get,
$4+{{y}^{2}}-4a-2by+(4a+6b-13)=0..........(3)$
In the equation (2) let ${{y}_{1}}$,${{y}_{2}}$be the roots. So, from equation (3),
Sum of the roots will be,
${{y}_{1}}+{{y}_{2}}=2b........(4)$
Product of the roots will be,
${{y}_{1}}{{y}_{2}}=6b-9..........(5)$
Now as we know that length of intercept is (${{y}_{1}}-{{y}_{2}}$), so we will use the identity which is,
$a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
${{y}_{1}}-{{y}_{2}}$=$\sqrt{{{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}-4{{y}_{1}}{{y}_{2}}}$
Now we will substitute the values of $\left( {{y}_{1}}+{{y}_{2}} \right)$and ${{y}_{1}}{{y}_{2}}$to find the value of values of ‘b’ as we are given the value of ${{y}_{1}}-{{y}_{2}}$which is 3.
So,
\[{{3}^{2}}={{\left( {{y}_{1}}+{{y}_{2}} \right)}^{2}}-4{{y}_{1}}{{y}_{2}}\]
Substituting the values of equation (4) and (5), we get
$\Rightarrow 9={{\left( 2b \right)}^{2}}-4\left( 6b-9 \right)$
$\Rightarrow 4{{b}^{2}}-24b+27=0$
We will solve the quadratic equation. Now by splitting the middle term, we get
$\Rightarrow 4{{b}^{2}}-6b-18b+27=0$
$\Rightarrow 2b(2b-3)-9(2b-3)=0$
\[\begin{align}
& \Rightarrow (2b-9)(2b-3)=0 \\
& \Rightarrow 2b-9=0,2b-3=0 \\
& \Rightarrow 2b=9,2b=3 \\
& \Rightarrow b=\dfrac{9}{2},b=\dfrac{3}{2} \\
\end{align}\]
Hence the values of b is $\dfrac{9}{2}$ or $\dfrac{3}{2}$.
By substituting the value of y =3 in the equation (2) we get,
${{x}^{2}}+9-2ax-6b+(4a+6b-13)=0$
${{x}^{2}}-2ax+4a-4=0.........(6)$
In equation (6) let ${{x}_{1}}$,${{x}_{2}}$ be the roots ,
Sum of the roots will be,
${{x}_{1}}+{{x}_{2}}=2a......(7)$
Product of the roots will be
${{x}_{1}}{{x}_{2}}=(4a-4).........(8)$
Now as we know the length of intercept is $({{x}_{1}}-{{x}_{2}})$, so we will use the identity which is ,
$a-b=\sqrt{{{\left( a+b \right)}^{2}}-4ab}$
\[({{x}_{1}}-{{x}_{2}})=\sqrt{{{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}{{x}_{2}}}\]
Now we will substitute $({{x}_{1}}+{{x}_{2}})$and ${{x}_{1}}{{x}_{2}}$to find the value or values of a as we are given the value of $({{x}_{1}}-{{x}_{2}})=4$
So,
$4={{({{x}_{1}}+{{x}_{2}})}^{2}}-4{{x}_{1}}{{x}_{2}}$
$\Rightarrow 4={{(2a)}^{2}}-4(4a-4)$
$\Rightarrow 4={{a}^{2}}-(4a-4)$
$\Rightarrow {{a}^{2}}-4a=0$
$\Rightarrow a(a-4)=0$
Here the value of a is 0 or 4.
So now there are 4 such sets of equation can be made by the sets of values of (a,b) which are \[\left( 0,\dfrac{3}{2} \right),\left( 0,\dfrac{9}{2} \right),\left( 4,\dfrac{3}{2} \right)\] and $\left( 4,\dfrac{9}{2} \right)$.
For $\left( 0,\dfrac{3}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(0)-2y\times \dfrac{3}{2}+(4(0)+6\times \dfrac{3}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-3y+(-4)=0$
For $\left( 0,\dfrac{9}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(0)-2y\times \dfrac{9}{2}+(4(0)+6\times \dfrac{9}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-9y+14=0$
For $\left( 4,\dfrac{3}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(4)-2y\times \dfrac{3}{2}+(4(4)+6\times \dfrac{3}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-8x-3y+12=0$
For $\left( 4,\dfrac{9}{2} \right)$ we will substitute in equation (3), we get
${{x}^{2}}+{{y}^{2}}-2ax-2by+(4a+6b-13)=0$
${{x}^{2}}+{{y}^{2}}-2x(4)-2y\times \dfrac{9}{2}+(4(4)+6\times \dfrac{9}{2}-13)=0$
$\therefore {{x}^{2}}+{{y}^{2}}-8x-9y+30=0$
Only one equation of the pair$\left( 4,\dfrac{9}{2} \right)$ is available in the option.
So, the answer is option (d).
Note: Here the difficulty or confusion a student can face is putting the value of c back into the equation and also selecting the correct values of a and b.
Recently Updated Pages
Master Class 12 Business Studies: Engaging Questions & Answers for Success

Master Class 12 Economics: Engaging Questions & Answers for Success

Master Class 12 English: Engaging Questions & Answers for Success

Master Class 12 Maths: Engaging Questions & Answers for Success

Master Class 12 Social Science: Engaging Questions & Answers for Success

Master Class 12 Chemistry: Engaging Questions & Answers for Success

Trending doubts
What is meant by exothermic and endothermic reactions class 11 chemistry CBSE

Which animal has three hearts class 11 biology CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

