Answer
Verified
469.2k+ views
Hint: Charge on the electron is given by,
\[e = 1.6 \times {10^{ - 19}}\;{\text{C}}\]. The equation for magnetic force is given by,
\[F = Be{v_d}\]. The equation for drift velocity is given by,
\[{v_d} = \dfrac{I}{{NeA}}\]
Complete step by step solution:
Given, Number of turns in the circular coil,
\[n = 20\]
Uniform magnetic field strength,
\[B = 0.1\;{\text{T}}\]
Radius of the circular coil,
\[r = {\text{10}}\;{\text{cm}}\]
Convert it to the meter unit.
Therefore,
\[r = {\text{0}}{\text{.1}}\;{\text{m}}\]
Current carrying by the coil,
\[I = {\text{5}}\;{\text{A}}\]
Cross-sectional area of the copper wire,
\[A = {10^{ - 5}}\;{{\text{m}}^{\text{2}}}\]
Number of free electrons per unit volume of copper,
\[N = {10^{29}}\] Per meter cube.
According to the question, the magnetic field is uniform. Hence, the total torque in the coil is zero.
We know that the amount of charge applied to an object reflects the amount of imbalance on that object between electrons and protons.
Charge on the electron is given by,
\[e = 1.6 \times {10^{ - 19}}\;{\text{C}}\]
The magnetic force is a result of the electromagnetic force, and one nature's fundamental forces, and it is caused by the charging motion.
The equation for magnetic force is given by,
\[F = Be{v_d}\] …… (i)
Where, \[{v_d}\] is drift velocity of electrons and the formula for drift velocity is given by,
\[{v_d} = \dfrac{I}{{NeA}}\]
Now replace the value of \[{v_d}\] in equation (i)
Therefore,
\[
F = \dfrac{{BeI}}{{NeA}} \\
F = \dfrac{{BI}}{{NA}} \\
\] …… (ii)
Now substitute the values of \[B\], \[I\], \[N\], and \[A\] in equation (ii)
\[
F = \dfrac{{0.1\;{\text{T}} \times {\text{5}}\;{\text{A}}}}{{{{10}^{29}} \times {{10}^{ - 5}}\;{{\text{m}}^{\text{2}}}}} \\
= 5 \times {10^{ - 25}}\;{\text{N}} \\
\]
Hence, the average force on each electron is \[5 \times {10^{ - 25}}\;{\text{N}}\].
The correct option is A.
Note: In order to calculate the average force we use the formula for magnetic force which is given by,
\[F = Be{v_d}\]. Where, \[{v_d}\] is drift velocity of electrons and the formula for drift velocity is given by,
\[{v_d} = \dfrac{I}{{NeA}}\].
\[e = 1.6 \times {10^{ - 19}}\;{\text{C}}\]. The equation for magnetic force is given by,
\[F = Be{v_d}\]. The equation for drift velocity is given by,
\[{v_d} = \dfrac{I}{{NeA}}\]
Complete step by step solution:
Given, Number of turns in the circular coil,
\[n = 20\]
Uniform magnetic field strength,
\[B = 0.1\;{\text{T}}\]
Radius of the circular coil,
\[r = {\text{10}}\;{\text{cm}}\]
Convert it to the meter unit.
Therefore,
\[r = {\text{0}}{\text{.1}}\;{\text{m}}\]
Current carrying by the coil,
\[I = {\text{5}}\;{\text{A}}\]
Cross-sectional area of the copper wire,
\[A = {10^{ - 5}}\;{{\text{m}}^{\text{2}}}\]
Number of free electrons per unit volume of copper,
\[N = {10^{29}}\] Per meter cube.
According to the question, the magnetic field is uniform. Hence, the total torque in the coil is zero.
We know that the amount of charge applied to an object reflects the amount of imbalance on that object between electrons and protons.
Charge on the electron is given by,
\[e = 1.6 \times {10^{ - 19}}\;{\text{C}}\]
The magnetic force is a result of the electromagnetic force, and one nature's fundamental forces, and it is caused by the charging motion.
The equation for magnetic force is given by,
\[F = Be{v_d}\] …… (i)
Where, \[{v_d}\] is drift velocity of electrons and the formula for drift velocity is given by,
\[{v_d} = \dfrac{I}{{NeA}}\]
Now replace the value of \[{v_d}\] in equation (i)
Therefore,
\[
F = \dfrac{{BeI}}{{NeA}} \\
F = \dfrac{{BI}}{{NA}} \\
\] …… (ii)
Now substitute the values of \[B\], \[I\], \[N\], and \[A\] in equation (ii)
\[
F = \dfrac{{0.1\;{\text{T}} \times {\text{5}}\;{\text{A}}}}{{{{10}^{29}} \times {{10}^{ - 5}}\;{{\text{m}}^{\text{2}}}}} \\
= 5 \times {10^{ - 25}}\;{\text{N}} \\
\]
Hence, the average force on each electron is \[5 \times {10^{ - 25}}\;{\text{N}}\].
The correct option is A.
Note: In order to calculate the average force we use the formula for magnetic force which is given by,
\[F = Be{v_d}\]. Where, \[{v_d}\] is drift velocity of electrons and the formula for drift velocity is given by,
\[{v_d} = \dfrac{I}{{NeA}}\].
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE