Answer
Verified
472.2k+ views
Hint: For a small radius dr, we have to consider a small distribution of mass dm. We need to formulate for small change in moment of inertia and integrate it along smaller radius (a) and bigger radius (b). After obtaining a moment of inertia of the disc I, we can find the radius of gyration.
Formula used:
Radius of gyration, $k=\sqrt{\dfrac{I}{m}}$
Complete answer:
Radius of gyration of a body about an axis of rotation is defined as the radial distance to a point which would have a moment of inertia which is equal to the moment of inertia of the body’s actual distribution of mass. This is conditional to the total mass of the body being concentrated.
Let us consider the moment of inertia of the disc to be I
dI is a partial derivative of moment of inertia.
$\begin{align}
& dI=(dm){{r}^{2}} \\
& =(\sigma dA){{r}^{2}} \\
& =(\dfrac{{{\sigma }_{0}}}{r}2\pi rdr){{r}^{2}} \\
& =({{\sigma }_{0}}2\pi ){{r}^{2}}dr \\
& I=\int{dI=\int_{a}^{b}{{{\sigma }_{0}}}}2\pi {{r}^{2}}dr \\
& ={{\sigma }_{0}}2\pi (\dfrac{{{b}^{3}}-{{a}^{3}}}{3}) \\
& m=\int{dm}=\int{\sigma dA} \\
& ={{\sigma }_{0}}2\pi \int_{a}^{b}{dr} \\
& m={{\sigma }_{0}}2\pi (b-a) \\
\end{align}$
Radius of gyration of the disc is
$\begin{align}
& k=\sqrt{\dfrac{I}{m}}=\sqrt{\dfrac{({{b}^{3}}-{{a}^{3}})}{3(b-a)}} \\
& =\sqrt{(\dfrac{{{a}^{2}}+{{b}^{2}}+ab}{3})} \\
\end{align}$
Hence the radius of gyration of the disc is $\sqrt{(\dfrac{{{a}^{2}}+{{b}^{2}}+ab}{3})}$
Additional Information:
The dynamics and kinematics of rotation around a fixed axis of a rigid body are algebraically much easier than those for free rotation of a rigid body. They are completely analogous to those of linear motion along a single fixed direction, which is not true for free rotation of a rigid body.
Note:
A rigid body is an object of limited reach in which all the distances between the component particles doesn’t change. Perfect rigid bodies do not exist. External forces can deform any solid. So we define a rigid body as an object that can be deformed under large forces.
Formula used:
Radius of gyration, $k=\sqrt{\dfrac{I}{m}}$
Complete answer:
Radius of gyration of a body about an axis of rotation is defined as the radial distance to a point which would have a moment of inertia which is equal to the moment of inertia of the body’s actual distribution of mass. This is conditional to the total mass of the body being concentrated.
Let us consider the moment of inertia of the disc to be I
dI is a partial derivative of moment of inertia.
$\begin{align}
& dI=(dm){{r}^{2}} \\
& =(\sigma dA){{r}^{2}} \\
& =(\dfrac{{{\sigma }_{0}}}{r}2\pi rdr){{r}^{2}} \\
& =({{\sigma }_{0}}2\pi ){{r}^{2}}dr \\
& I=\int{dI=\int_{a}^{b}{{{\sigma }_{0}}}}2\pi {{r}^{2}}dr \\
& ={{\sigma }_{0}}2\pi (\dfrac{{{b}^{3}}-{{a}^{3}}}{3}) \\
& m=\int{dm}=\int{\sigma dA} \\
& ={{\sigma }_{0}}2\pi \int_{a}^{b}{dr} \\
& m={{\sigma }_{0}}2\pi (b-a) \\
\end{align}$
Radius of gyration of the disc is
$\begin{align}
& k=\sqrt{\dfrac{I}{m}}=\sqrt{\dfrac{({{b}^{3}}-{{a}^{3}})}{3(b-a)}} \\
& =\sqrt{(\dfrac{{{a}^{2}}+{{b}^{2}}+ab}{3})} \\
\end{align}$
Hence the radius of gyration of the disc is $\sqrt{(\dfrac{{{a}^{2}}+{{b}^{2}}+ab}{3})}$
Additional Information:
The dynamics and kinematics of rotation around a fixed axis of a rigid body are algebraically much easier than those for free rotation of a rigid body. They are completely analogous to those of linear motion along a single fixed direction, which is not true for free rotation of a rigid body.
Note:
A rigid body is an object of limited reach in which all the distances between the component particles doesn’t change. Perfect rigid bodies do not exist. External forces can deform any solid. So we define a rigid body as an object that can be deformed under large forces.
Recently Updated Pages
The transalkenes are formed by the reduction of alkynes class 11 chemistry JEE_Main
The major organic compound formed by the reaction of class 11 chemistry JEE_Main
1bromo3chlorocyclobutane when treated with two equivalents class 11 chem sec 1 JEE_Main
Which of the following oxide will produce hydrogen class 11 chem sec 1 NEET_UG
Which one of the following statements about water is class 11 chemistry JEE_Main
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE