
A circular lamina of radius a and centre O has a mass per unit area of , where x is the distance from O and k is a constant. If the mass of the lamina is; in terms of M and a the moment of inertia of the lamina about an axis through O and perpendicular to the lamina is . Find x.
Answer
513.9k+ views
Hint: In order to find the moment of inertia of the given shape, we need the mass of the lamina to find the moment of inertia, so we will consider mass of a small element and in order to find the mass of the lamina we will integrate the mass for the element. Further we will use the formula of moment of inertia and finally compare with the given value.
Formula used-
Complete Step-by-Step solution:
Let's consider the small element of lamina at x distance from the centre of thickness dx as shown below.
The area of the element is
The mass per unit area is given as
The mass of lamina is,
The moment of inertia of lamina about an axis through O and perpendicular to the lamina is,
Solve further,
As we know that:
Let us substitute the value of k in the equation of moment of inertia.
Thus, the required moment of inertia is
Hence, the value of x is 2.
Note- The moment of inertia of a solid body, otherwise known as the mass moment of inertia, angular momentum, or rotational inertia, is a quantity that specifies the torque necessary for a desired angular acceleration along a rotational axis; analogous to how gravity decides the force required for a desired acceleration. Students must remember the formula for moment of inertia for some common shapes and the general formula to find the moment of inertia.
Formula used-
Complete Step-by-Step solution:
Let's consider the small element of lamina at x distance from the centre of thickness dx as shown below.

The area of the element is
The mass per unit area is given as
The mass of lamina is,
The moment of inertia of lamina about an axis through O and perpendicular to the lamina is,
Solve further,
As we know that:
Let us substitute the value of k in the equation of moment of inertia.
Thus, the required moment of inertia is
Hence, the value of x is 2.
Note- The moment of inertia of a solid body, otherwise known as the mass moment of inertia, angular momentum, or rotational inertia, is a quantity that specifies the torque necessary for a desired angular acceleration along a rotational axis; analogous to how gravity decides the force required for a desired acceleration. Students must remember the formula for moment of inertia for some common shapes and the general formula to find the moment of inertia.
Latest Vedantu courses for you
Grade 10 | MAHARASHTRABOARD | SCHOOL | English
Vedantu 10 Maharashtra Pro Lite (2025-26)
School Full course for MAHARASHTRABOARD students
₹31,500 per year
Recently Updated Pages
Express the following as a fraction and simplify a class 7 maths CBSE

The length and width of a rectangle are in ratio of class 7 maths CBSE

The ratio of the income to the expenditure of a family class 7 maths CBSE

How do you write 025 million in scientific notatio class 7 maths CBSE

How do you convert 295 meters per second to kilometers class 7 maths CBSE

Write the following in Roman numerals 25819 class 7 maths CBSE

Trending doubts
A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

The British separated Burma Myanmar from India in 1935 class 10 social science CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

What are the public facilities provided by the government? Also explain each facility

Difference between mass and weight class 10 physics CBSE

SI unit of electrical energy is A Joule B Kilowatt class 10 physics CBSE
