Answer
Verified
497.7k+ views
Hint: The probability of finding a student with a particular age depends on the frequency of students with the particular age. The number of total outcomes would be 15 (since, there are 15 students). Mean is given as \[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\], where $p({{X}_{i}})$ is the probability for occurrence of the event ${{X}_{i}}$. To calculate the variance, we define, E(X) = \[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\]. Thus, variance is $E({{X}^{2}})-{{(E(X))}^{2}}$. While, standard deviation is the square root of variance.
Complete step-by-step answer:
Now, first we start with finding the probability distribution of random variable X.
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Now, we can calculate probability for each event (namely the age of the students)-
P(X=14) = $\dfrac{2}{15}$, P(X=15) = $\dfrac{1}{15}$, P(X=16) = $\dfrac{2}{15}$, P(X=17) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=18) = $\dfrac{1}{15}$, P(X=19) = $\dfrac{2}{15}$, P(X=20) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=21) = $\dfrac{1}{15}$
This is the required probability distribution of the random variable X.
(These probabilities are calculated since we know that the total number of outcomes is 15 and the desired number of outcomes can be seen by the frequency of respective ages.)
Now, to find the mean,
\[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\]
\[\sum\limits_{i=1}^{15}{{{X}_{i}}}p({{X}_{i}})\]
=$14\times \dfrac{2}{15}+15\times \dfrac{1}{15}+16\times \dfrac{2}{15}+17\times \dfrac{3}{15}+18\times \dfrac{1}{15}+19\times \dfrac{2}{15}+20\times \dfrac{3}{15}+21\times \dfrac{1}{15}$
=$\dfrac{1}{15}$(28+15+32+51+18+38+60+21)
=$\dfrac{263}{15}$
= 17.53 (approximately)
To find the variance,
We calculate $E({{X}^{2}})$
E(${{X}^{2}}$) = \[\sum\limits_{i=1}^{n}{{{X}_{i}}^{2}}p({{X}_{i}})\]
E(${{X}^{2}}$) =\[{{14}^{2}}\times \dfrac{2}{15}+{{15}^{2}}\times \dfrac{1}{15}+{{16}^{2}}\times \dfrac{2}{15}+{{17}^{2}}\times \dfrac{3}{15}+{{18}^{2}}\times \dfrac{1}{15}+{{19}^{2}}\times \dfrac{2}{15}+{{20}^{2}}\times \dfrac{3}{15}+{{21}^{2}}\times \dfrac{1}{15}\]
E(${{X}^{2}}$) = $\dfrac{4683}{15}$
= 312.2
Now, the variance = $E({{X}^{2}})-{{(E(X))}^{2}}$
Variance = (312.2) -${{17.53}^{2}}$
(Since, mean = E(X) = 17.53)
Variance = 4.78 (approximately)
Now, standard deviation = \[\sqrt{\text{Variance}}\]=$\sqrt{4.78}$=2.186
Note: To calculate the probability of the event in case of discrete number of distribution, we simply calculate the desired frequency of the event and then divide it by the total number of outcomes. Variance can also be calculated by the formula $\dfrac{\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\bar{X})}^{2}}}}{n}$. Here, n is the number of total outcomes and $\bar{X}$is the mean.
Complete step-by-step answer:
Now, first we start with finding the probability distribution of random variable X.
Probability = $\dfrac{\text{Desired number of outcomes}}{\text{Total number of outcomes}}$
Now, we can calculate probability for each event (namely the age of the students)-
P(X=14) = $\dfrac{2}{15}$, P(X=15) = $\dfrac{1}{15}$, P(X=16) = $\dfrac{2}{15}$, P(X=17) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=18) = $\dfrac{1}{15}$, P(X=19) = $\dfrac{2}{15}$, P(X=20) = $\dfrac{3}{15}=\dfrac{1}{5}$, P(X=21) = $\dfrac{1}{15}$
This is the required probability distribution of the random variable X.
(These probabilities are calculated since we know that the total number of outcomes is 15 and the desired number of outcomes can be seen by the frequency of respective ages.)
Now, to find the mean,
\[\sum\limits_{i=1}^{n}{{{X}_{i}}}p({{X}_{i}})\]
\[\sum\limits_{i=1}^{15}{{{X}_{i}}}p({{X}_{i}})\]
=$14\times \dfrac{2}{15}+15\times \dfrac{1}{15}+16\times \dfrac{2}{15}+17\times \dfrac{3}{15}+18\times \dfrac{1}{15}+19\times \dfrac{2}{15}+20\times \dfrac{3}{15}+21\times \dfrac{1}{15}$
=$\dfrac{1}{15}$(28+15+32+51+18+38+60+21)
=$\dfrac{263}{15}$
= 17.53 (approximately)
To find the variance,
We calculate $E({{X}^{2}})$
E(${{X}^{2}}$) = \[\sum\limits_{i=1}^{n}{{{X}_{i}}^{2}}p({{X}_{i}})\]
E(${{X}^{2}}$) =\[{{14}^{2}}\times \dfrac{2}{15}+{{15}^{2}}\times \dfrac{1}{15}+{{16}^{2}}\times \dfrac{2}{15}+{{17}^{2}}\times \dfrac{3}{15}+{{18}^{2}}\times \dfrac{1}{15}+{{19}^{2}}\times \dfrac{2}{15}+{{20}^{2}}\times \dfrac{3}{15}+{{21}^{2}}\times \dfrac{1}{15}\]
E(${{X}^{2}}$) = $\dfrac{4683}{15}$
= 312.2
Now, the variance = $E({{X}^{2}})-{{(E(X))}^{2}}$
Variance = (312.2) -${{17.53}^{2}}$
(Since, mean = E(X) = 17.53)
Variance = 4.78 (approximately)
Now, standard deviation = \[\sqrt{\text{Variance}}\]=$\sqrt{4.78}$=2.186
Note: To calculate the probability of the event in case of discrete number of distribution, we simply calculate the desired frequency of the event and then divide it by the total number of outcomes. Variance can also be calculated by the formula $\dfrac{\sum\limits_{i=1}^{n}{{{({{X}_{i}}-\bar{X})}^{2}}}}{n}$. Here, n is the number of total outcomes and $\bar{X}$is the mean.
Recently Updated Pages
In order to prevent the spoilage of potato chips they are packed in plastic bags in an atmosphere of
Which body formulates the foreign policy of India class 10 social science ICSE
When NaCl is dissolved in water the sodium ion becomes
The aqueous solution of aluminium chloride is acidic due to
What is the message of the poem Nine Gold Medals class 10 english ICSE
Give the summary of the story the enchanted pool class 10 english ICSE
Trending doubts
How do you graph the function fx 4x class 9 maths CBSE
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE
10 examples of friction in our daily life
What organs are located on the left side of your body class 11 biology CBSE