Answer
Verified
497.7k+ views
Hint: In order to solve such type of question firstly we have to find out the probability of exactly 3 heads, probability of getting exactly 4 heads and probability of getting all three heads then we will easily get the probability of getting at least three heads using the formula $^n{C_r}{a^r}{b^{n - r}}$
Complete step-by-step answer:
We know that,
Probability of getting a head when a coin is tossed $ = $ probability of getting a tail when a coin is tossed$a = b = \dfrac{1}{2}$.
We have given that,
A coin is tossed $5$ times. Therefore $n = 5$ and probability of getting at least $3$ heads $r = 3,4,5.$
Probability of getting at least three heads$ = $ Probability of exactly 3 heads $ + $ Probability of getting exactly 4 heads$ + $ Probability of getting all three heads.
Using formula,
$^n{C_r}{a^r}{b^{n - r}} - - - - - \left( 1 \right)$
Therefore,
$^5{C_3}{\left( {\dfrac{1}{2}} \right)^3}{\left( {\dfrac{1}{2}} \right)^{5 - 3}}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^4}{\left( {\dfrac{1}{2}} \right)^{5 - 4}}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}{\left( {\dfrac{1}{2}} \right)^{5 - 5}}$
Or $^5{C_3}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}$
Using formula $^n{C_r}{a^r}{b^{n - r}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$\left( {\dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} + \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}}} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {\dfrac{{5 \times 4}}{{2 \times 1}} + \dfrac{5}{1} + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {10 + 5 + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\dfrac{{16}}{{32}} = \dfrac{1}{2}$
Therefore, $x = 1$
Note: Whenever we face these types of questions the key concept is that simply we will understand the given part to calculate the value of $a,b,n,r$. Then we have to substitute this in this formula $^n{C_r}{a^r}{b^{n - r}}$ and we will get our desired answer.
Complete step-by-step answer:
We know that,
Probability of getting a head when a coin is tossed $ = $ probability of getting a tail when a coin is tossed$a = b = \dfrac{1}{2}$.
We have given that,
A coin is tossed $5$ times. Therefore $n = 5$ and probability of getting at least $3$ heads $r = 3,4,5.$
Probability of getting at least three heads$ = $ Probability of exactly 3 heads $ + $ Probability of getting exactly 4 heads$ + $ Probability of getting all three heads.
Using formula,
$^n{C_r}{a^r}{b^{n - r}} - - - - - \left( 1 \right)$
Therefore,
$^5{C_3}{\left( {\dfrac{1}{2}} \right)^3}{\left( {\dfrac{1}{2}} \right)^{5 - 3}}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^4}{\left( {\dfrac{1}{2}} \right)^{5 - 4}}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}{\left( {\dfrac{1}{2}} \right)^{5 - 5}}$
Or $^5{C_3}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_4}{\left( {\dfrac{1}{2}} \right)^5}{ + ^5}{C_5}{\left( {\dfrac{1}{2}} \right)^5}$
Using formula $^n{C_r}{a^r}{b^{n - r}} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
$\left( {\dfrac{{5!}}{{3!\left( {5 - 3} \right)!}} + \dfrac{{5!}}{{4!\left( {5 - 4} \right)!}} + \dfrac{{5!}}{{5!\left( {5 - 5} \right)!}}} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {\dfrac{{5 \times 4}}{{2 \times 1}} + \dfrac{5}{1} + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\left( {10 + 5 + 1} \right){\left( {\dfrac{1}{2}} \right)^5}$
Or $\dfrac{{16}}{{32}} = \dfrac{1}{2}$
Therefore, $x = 1$
Note: Whenever we face these types of questions the key concept is that simply we will understand the given part to calculate the value of $a,b,n,r$. Then we have to substitute this in this formula $^n{C_r}{a^r}{b^{n - r}}$ and we will get our desired answer.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE