
A committee of $ 5 $ is to be formed out of $ 6 $ gents and $ 4 $ ladies. In how many ways this can be done, if at most two ladies are included?
Answer
483.9k+ views
Hint: we find the possible combination of forming a committee. We will add these combinations by considering the ladies in group as zero ladies, one ladies and 2 ladies. We use a formula of combination which is $ {}^n{C_r} = \dfrac{{n!}}{{r!\left( {n - r} \right)!}} $ .
Complete step-by-step answer:
We have to choose a committee of $ 5 $ persons from given that people are $ 6 $ gents and $ 4 $ ladies
The possible way of forming this committee are
There are $ 5 $ gents and $ 0 $ ladies
$ 4 $ gents and $ 1 $ lady
$ 3 $ gents and $ 2 $ ladies
By considering these cases we can find the number of combinations,
The number of combinations of $ 5 $ gents and $ 0 $ ladies is $ {}^6{C_5} \times {}^4{C_0} $
Which can further simplified as \[\dfrac{{6!}}{{5!\left( {6 - 5} \right)!}} \times \dfrac{{4!}}{{0!\left( {4 - 0} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{5!1!}} \times \dfrac{{4!}}{{0!4!}} = 6 \times 1 = 6\]
The number of combinations of $ 4 $ gents and $ 1 $ lady is $ {}^6{C_4} \times {}^4{C_1} $
Which can further simplified as \[\dfrac{{6!}}{{4!\left( {6 - 4} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{4!2!}} \times \dfrac{{4!}}{{1!3!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4!}}{{4! \times 2}} \times \dfrac{{4 \times 3!}}{{1 \times 3!}} = 15 \times 4 = 60\]
The number of combinations of $ 3 $ gents and $ 2 $ ladies is $ {}^6{C_3} \times {}^4{C_2} $
Which can further simplified as \[\dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{3!3!}} \times \dfrac{{4!}}{{2!2!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4 \times 3!}}{{3! \times 6}} \times \dfrac{{4 \times 3 \times 2!}}{{2 \times 2!}} = 20 \times 6 = 120\]
Now the total number of combination of forming the committee of $ 5 $ persons is $ 6 + 60 + 120 = 186 $ ways
Note: In calculation we have used a formula to simplify these types of equations is $ n! = n \times \left( {n - 1} \right)! $ . Also we should remember the value of some standard factorials which are $ 0! = 1\& 1! = 1 $ . Avoid any type of calculation mistake.
Complete step-by-step answer:
We have to choose a committee of $ 5 $ persons from given that people are $ 6 $ gents and $ 4 $ ladies
The possible way of forming this committee are
There are $ 5 $ gents and $ 0 $ ladies
$ 4 $ gents and $ 1 $ lady
$ 3 $ gents and $ 2 $ ladies
By considering these cases we can find the number of combinations,
The number of combinations of $ 5 $ gents and $ 0 $ ladies is $ {}^6{C_5} \times {}^4{C_0} $
Which can further simplified as \[\dfrac{{6!}}{{5!\left( {6 - 5} \right)!}} \times \dfrac{{4!}}{{0!\left( {4 - 0} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{5!1!}} \times \dfrac{{4!}}{{0!4!}} = 6 \times 1 = 6\]
The number of combinations of $ 4 $ gents and $ 1 $ lady is $ {}^6{C_4} \times {}^4{C_1} $
Which can further simplified as \[\dfrac{{6!}}{{4!\left( {6 - 4} \right)!}} \times \dfrac{{4!}}{{1!\left( {4 - 1} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{4!2!}} \times \dfrac{{4!}}{{1!3!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4!}}{{4! \times 2}} \times \dfrac{{4 \times 3!}}{{1 \times 3!}} = 15 \times 4 = 60\]
The number of combinations of $ 3 $ gents and $ 2 $ ladies is $ {}^6{C_3} \times {}^4{C_2} $
Which can further simplified as \[\dfrac{{6!}}{{3!\left( {6 - 3} \right)!}} \times \dfrac{{4!}}{{2!\left( {4 - 2} \right)!}}\]
Putting the values of factorial then we have,
\[ = \dfrac{{6!}}{{3!3!}} \times \dfrac{{4!}}{{2!2!}}\]
Further it can be solved we have,
\[ = \dfrac{{6 \times 5 \times 4 \times 3!}}{{3! \times 6}} \times \dfrac{{4 \times 3 \times 2!}}{{2 \times 2!}} = 20 \times 6 = 120\]
Now the total number of combination of forming the committee of $ 5 $ persons is $ 6 + 60 + 120 = 186 $ ways
Note: In calculation we have used a formula to simplify these types of equations is $ n! = n \times \left( {n - 1} \right)! $ . Also we should remember the value of some standard factorials which are $ 0! = 1\& 1! = 1 $ . Avoid any type of calculation mistake.
Recently Updated Pages
Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Trending doubts
Truly whole mankind is one was declared by the Kannada class 10 social science CBSE

Explain the three major features of the shiwaliks class 10 social science CBSE

Find the area of the minor segment of a circle of radius class 10 maths CBSE

Distinguish between the reserved forests and protected class 10 biology CBSE

A boat goes 24 km upstream and 28 km downstream in class 10 maths CBSE

A gulab jamun contains sugar syrup up to about 30 of class 10 maths CBSE
