
A committee of three has to be chosen from a group of 4 men and 5 women. If the selection is made at random, what is the probability that exactly two members are men?
A. \[\dfrac{5}{14}\]
B. \[\dfrac{1}{21}\]
C. $\dfrac{3}{14}$
D. $\dfrac{8}{21}$
Answer
607.5k+ views
Hint: In this question we will find the probability of men in the committee of 4 members and then we will find the probability of women. Then, in the final step, we will find the probability of exactly 2 men in the committee by using the formula $=\dfrac{\left[ \text{Probability of 2 men }\times \text{ Probability of 1 women} \right]}{\text{Total Probability}}$.
Complete step by step answer:
It is given in the question that there are 4 men and 5 women out of which we have to make a committee of 3 members.
Also, it is given that there are always two men and only one woman in the 3 member committee.
Now, we know that the formula of probability $=\dfrac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$.
So, the probability of men to be on the committee is \[={}^{4}{{C}_{2}}\].
As, we know that the formula for ${}^{n}{{C}_{r}}$ is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we can write as,
\[{}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}\]
\[{}^{4}{{C}_{2}}=\dfrac{4\times 3\times 2!}{2!\times 2!}\]
Cancelling \[2!\] from numerator and denominator, we get,
\[\begin{align}
& {}^{4}{{C}_{2}}=\dfrac{4\times 3}{2!} \\
& {}^{4}{{C}_{2}}=\dfrac{12}{2} \\
& {}^{4}{{C}_{2}}=6 \\
\end{align}\]
Therefore, there are 6 combinations possible for men to be in the committee of 3 members.
Similarly, the probability of women to be on the committee is $={}^{5}{{C}_{1}}$.
As, we know that the formula for ${}^{n}{{C}_{r}}$is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we can write that,
\[{}^{5}{{C}_{1}}=\dfrac{5!}{1!\left( 5-1 \right)!}\]
\[\begin{align}
& {}^{5}{{C}_{1}}=\dfrac{5!}{1!\times 4!} \\
& {}^{5}{{C}_{1}}=\dfrac{5\times 4!}{1\times 4!} \\
\end{align}\]
Cancelling \[4!\] from numerator and denominator, we get,
\[{}^{5}{{C}_{1}}=5\]
Therefore, there are 5 combinations possible for a woman to be in the committee of 3 members.
Also, the total probability $={}^{9}{{C}_{3}}$.
As, we know that the formula for ${}^{n}{{C}_{r}}$ is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we can write as, ${}^{9}{{C}_{3}}=\dfrac{9!}{3!\left( 9-3 \right)!}$
${}^{9}{{C}_{3}}=\dfrac{9\times 8\times 7\times 6!}{3!\times 6!}$
Cancelling \[6!\] from numerator and denominator, we get,
\[\begin{align}
& {}^{9}{{C}_{3}}=\dfrac{9\times 8\times 7}{3\times 2\times 1} \\
& {}^{9}{{C}_{3}}=84 \\
\end{align}\]
Thus, total probability = 84.
So, probability of exactly 2 men in the committee of 3 members will be $=\dfrac{\text{Probability of 2 men }\times \text{ Probability of 1 women}}{\text{Total Probability}}$
We can substitute the value of probability of 2 men as 6 and probability of 1 woman as 5. Also, w can substitute the total probability = 84 in the above equation and we will get,
Probability of exactly 2 men $=\dfrac{6\times 5}{84}=\dfrac{30}{84}$
Dividing numerator and denominator by 6, we get,
$\dfrac{30}{84}=\dfrac{5}{14}$
Thus, the probability exactly for 2 men in the committee of 3 members is $\dfrac{5}{14}$.
Note: This question can be solved in just few lines if you know the formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. Please note that the formula ${}^{n}{{C}_{r}}$ is different from the formula ${}^{n}{{P}_{r}}$. We use ${}^{n}{{P}_{r}}$ in finding permutation and ${}^{n}{{C}_{r}}$ in finding combinations.
Complete step by step answer:
It is given in the question that there are 4 men and 5 women out of which we have to make a committee of 3 members.
Also, it is given that there are always two men and only one woman in the 3 member committee.
Now, we know that the formula of probability $=\dfrac{Number\ of\ favourable\ outcomes}{Total\ number\ of\ outcomes}$.
So, the probability of men to be on the committee is \[={}^{4}{{C}_{2}}\].
As, we know that the formula for ${}^{n}{{C}_{r}}$ is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we can write as,
\[{}^{4}{{C}_{2}}=\dfrac{4!}{2!\left( 4-2 \right)!}\]
\[{}^{4}{{C}_{2}}=\dfrac{4\times 3\times 2!}{2!\times 2!}\]
Cancelling \[2!\] from numerator and denominator, we get,
\[\begin{align}
& {}^{4}{{C}_{2}}=\dfrac{4\times 3}{2!} \\
& {}^{4}{{C}_{2}}=\dfrac{12}{2} \\
& {}^{4}{{C}_{2}}=6 \\
\end{align}\]
Therefore, there are 6 combinations possible for men to be in the committee of 3 members.
Similarly, the probability of women to be on the committee is $={}^{5}{{C}_{1}}$.
As, we know that the formula for ${}^{n}{{C}_{r}}$is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we can write that,
\[{}^{5}{{C}_{1}}=\dfrac{5!}{1!\left( 5-1 \right)!}\]
\[\begin{align}
& {}^{5}{{C}_{1}}=\dfrac{5!}{1!\times 4!} \\
& {}^{5}{{C}_{1}}=\dfrac{5\times 4!}{1\times 4!} \\
\end{align}\]
Cancelling \[4!\] from numerator and denominator, we get,
\[{}^{5}{{C}_{1}}=5\]
Therefore, there are 5 combinations possible for a woman to be in the committee of 3 members.
Also, the total probability $={}^{9}{{C}_{3}}$.
As, we know that the formula for ${}^{n}{{C}_{r}}$ is given by ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$, we can write as, ${}^{9}{{C}_{3}}=\dfrac{9!}{3!\left( 9-3 \right)!}$
${}^{9}{{C}_{3}}=\dfrac{9\times 8\times 7\times 6!}{3!\times 6!}$
Cancelling \[6!\] from numerator and denominator, we get,
\[\begin{align}
& {}^{9}{{C}_{3}}=\dfrac{9\times 8\times 7}{3\times 2\times 1} \\
& {}^{9}{{C}_{3}}=84 \\
\end{align}\]
Thus, total probability = 84.
So, probability of exactly 2 men in the committee of 3 members will be $=\dfrac{\text{Probability of 2 men }\times \text{ Probability of 1 women}}{\text{Total Probability}}$
We can substitute the value of probability of 2 men as 6 and probability of 1 woman as 5. Also, w can substitute the total probability = 84 in the above equation and we will get,
Probability of exactly 2 men $=\dfrac{6\times 5}{84}=\dfrac{30}{84}$
Dividing numerator and denominator by 6, we get,
$\dfrac{30}{84}=\dfrac{5}{14}$
Thus, the probability exactly for 2 men in the committee of 3 members is $\dfrac{5}{14}$.
Note: This question can be solved in just few lines if you know the formula ${}^{n}{{C}_{r}}=\dfrac{n!}{r!\left( n-r \right)!}$. Please note that the formula ${}^{n}{{C}_{r}}$ is different from the formula ${}^{n}{{P}_{r}}$. We use ${}^{n}{{P}_{r}}$ in finding permutation and ${}^{n}{{C}_{r}}$ in finding combinations.
Recently Updated Pages
Why are manures considered better than fertilizers class 11 biology CBSE

Find the coordinates of the midpoint of the line segment class 11 maths CBSE

Distinguish between static friction limiting friction class 11 physics CBSE

The Chairman of the constituent Assembly was A Jawaharlal class 11 social science CBSE

The first National Commission on Labour NCL submitted class 11 social science CBSE

Number of all subshell of n + l 7 is A 4 B 5 C 6 D class 11 chemistry CBSE

Trending doubts
Differentiate between an exothermic and an endothermic class 11 chemistry CBSE

10 examples of friction in our daily life

One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE

Difference Between Prokaryotic Cells and Eukaryotic Cells

1 Quintal is equal to a 110 kg b 10 kg c 100kg d 1000 class 11 physics CBSE

State the laws of reflection of light

