Answer
Verified
453.3k+ views
Hint: In order to solve the above question first we will find the time period after that we will calculate the velocity of the satellite. Then we will substitute the values of mass, velocity, and radius of the earth in order to determine the angular momentum of the satellite.
Complete step by step answer:
We know that,
A geostationary satellite is an earth-orbiting satellite, placed at an altitude nearly equal to 35,800 km and directly above the equator, which revolves in the same direction as the earth rotates (from west to east).
The time period of revolution of a geostationary satellite around the earth is the same as that rotation of the earth about its own axis, i.e. 24 hours.
The satellite is revolving around earth in equatorial plane with orbital radius -
\[r = 4.0{\text{ }} \times {\text{ }}{10^7}\;m\]
Mass of satellite, $m = 500kg$
The speed of a satellite around earth is given by
$v = \sqrt {\dfrac{{Gm}}{r}} $--------------- (1)
The satellite travels around the entire circumference of the earth which is equal to $2\pi r$
If r is the radius of the orbit in the period T. This means the orbital speed must be
$v = \dfrac{{2\pi r}}{T}$--------------(2)
From equation (1) and (2), we get
$\Rightarrow \sqrt {\dfrac{{Gm}}{r}} $= $\dfrac{{2\pi r}}{T}$
On solving of time period, T we get
\[\Rightarrow T = 2\pi \sqrt {\dfrac{{{r^3}}}{{Gm}}} \]
Therefore the time period of a satellite in circular orbit is
\[\Rightarrow T = 2\pi \sqrt {\dfrac{{{r^3}}}{{Gm}}} \]
A geostationary orbit equates to an orbital velocity of 3.07 km/s or an orbital period of 1,436 minutes which equates to almost exactly one sidereal day or 23.934461223 hours, which is approximately 24 hours.
Hence the satellites are geostationary satellites.
So, the time is taken by satellite to complete it’s one revolution T = 24 h = 86400 s
Now calculate the angular momentum of the satellite by using the time period and velocity of the satellite.
Angular momentum of satellite
$L = mvr$
Using equation (2),
$\Rightarrow L = m\left( {\dfrac{{2\pi r}}{T}} \right)r = \dfrac{{2\pi m{r^2}}}{T}$
Putting the all values in above equation of angular momentum
$\Rightarrow L = \dfrac{{2 \times 3.14 \times 500}}{{86400}} \times {\left( {4 \times {{10}^7}} \right)^2}$
$\Rightarrow L = 0.58 \times {10^{14}}{m^2}{s^{ - 1}}$
The magnitude of angular momentum of the satellite is $0.58 \times {10^{14}}{m^2}{s^{ - 1}}$. So the answer is option (C).
Note:
One should take care of the direction of angular momentum in consideration because angular momentum is a vector quantity. The direction of angular momentum is perpendicular to the velocity and position vector. If the position and velocity vector are perpendicular then angular momentum comes out to be maximum, as in this case both are perpendicular.
Complete step by step answer:
We know that,
A geostationary satellite is an earth-orbiting satellite, placed at an altitude nearly equal to 35,800 km and directly above the equator, which revolves in the same direction as the earth rotates (from west to east).
The time period of revolution of a geostationary satellite around the earth is the same as that rotation of the earth about its own axis, i.e. 24 hours.
The satellite is revolving around earth in equatorial plane with orbital radius -
\[r = 4.0{\text{ }} \times {\text{ }}{10^7}\;m\]
Mass of satellite, $m = 500kg$
The speed of a satellite around earth is given by
$v = \sqrt {\dfrac{{Gm}}{r}} $--------------- (1)
The satellite travels around the entire circumference of the earth which is equal to $2\pi r$
If r is the radius of the orbit in the period T. This means the orbital speed must be
$v = \dfrac{{2\pi r}}{T}$--------------(2)
From equation (1) and (2), we get
$\Rightarrow \sqrt {\dfrac{{Gm}}{r}} $= $\dfrac{{2\pi r}}{T}$
On solving of time period, T we get
\[\Rightarrow T = 2\pi \sqrt {\dfrac{{{r^3}}}{{Gm}}} \]
Therefore the time period of a satellite in circular orbit is
\[\Rightarrow T = 2\pi \sqrt {\dfrac{{{r^3}}}{{Gm}}} \]
A geostationary orbit equates to an orbital velocity of 3.07 km/s or an orbital period of 1,436 minutes which equates to almost exactly one sidereal day or 23.934461223 hours, which is approximately 24 hours.
Hence the satellites are geostationary satellites.
So, the time is taken by satellite to complete it’s one revolution T = 24 h = 86400 s
Now calculate the angular momentum of the satellite by using the time period and velocity of the satellite.
Angular momentum of satellite
$L = mvr$
Using equation (2),
$\Rightarrow L = m\left( {\dfrac{{2\pi r}}{T}} \right)r = \dfrac{{2\pi m{r^2}}}{T}$
Putting the all values in above equation of angular momentum
$\Rightarrow L = \dfrac{{2 \times 3.14 \times 500}}{{86400}} \times {\left( {4 \times {{10}^7}} \right)^2}$
$\Rightarrow L = 0.58 \times {10^{14}}{m^2}{s^{ - 1}}$
The magnitude of angular momentum of the satellite is $0.58 \times {10^{14}}{m^2}{s^{ - 1}}$. So the answer is option (C).
Note:
One should take care of the direction of angular momentum in consideration because angular momentum is a vector quantity. The direction of angular momentum is perpendicular to the velocity and position vector. If the position and velocity vector are perpendicular then angular momentum comes out to be maximum, as in this case both are perpendicular.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE