Answer
Verified
338.4k+ views
Hint: In order to solve this question, we will first balance the linear momentum using the law of conservation of linear momentum for inelastic collision and then by using Newton's equation of motion we will solve for distance balls that will cover together vertically.
Complete answer:
According to the question, we have given that
${m_1} = 3kg$ mass of first body
${v_1} = 18m{s^{ - 1}}$ velocity of the first body which is moving upwards.
${m_2} = 1.9kg$ mass of second body
${v_2} = - 13m{s^{ - 1}}$ velocity of the second body which is moving downward, it’s negative as it’s moving in the opposite direction to that of the first body.
Let $m = {m_1} + {m_2} = 4.9kg$ be the combined mass of balls after inelastic collision and v be the velocity with which both balls together rise upward.
So, Initial momentum of system P can be written as
$P = {m_1}{v_1} + {m_2}{v_2}$ on putting the values we get,
$P = 54 - 24.7$
$P = 29.3kgm{s^{ - 1}} \to (i)$
Now, final momentum of system P’ can be written as
$P' = ({m_1} + {m_2})v$ on putting the values we get,
$P' = 4.9v \to (ii)$
now, according to law of conservation of momentum we know that,
initial momentum is equal to final momentum so,
$P = P'$ so from equations (i) and (ii) we get,
$29.3 = 4.9v$
$ \Rightarrow v = 5.98m{s^{ - 1}}$
Now, both balls stick together and moves upwards against the force of gravity with initial velocity of $v = 5.98m{s^{ - 1}}$ and acceleration due to gravity acts downward against the motion of balls so, $a = g = - 9.8m{s^{ - 2}}$ and let h be the height to which ball moves before coming to rest so, final velocity will be zero.
Now, using newton’s equation of motion we have,
\[{\left( {{v_{final}}} \right)^2} - {\left( {{v_{initial}}} \right)^2} = 2as\].
Now, we know that ${v_{initial}} = v = 5.98m{s^{ - 1}}$, ${v_{final}} = 0$, $s = h$, and $a = g = - 9.8m{s^{ - 2}}$.
Now, substituting these values, we get,
$0 - {(5.98)^2} = - 2(9.8)h$
Simplifying the calculations, we get,
$35.76 = 19.6h$
$ \Rightarrow h = 1.35m$
Hence, balls moved to a height of $1.35m$ above the collision point.
Note:
It should be remembered that, in a perfectly inelastic collision both bodies stick together after collision and move together with same velocity and here it was mentioned to ignore air drag. air drag is the resistance to motion due to air particles which slows down the velocity of bodies.
Complete answer:
According to the question, we have given that
${m_1} = 3kg$ mass of first body
${v_1} = 18m{s^{ - 1}}$ velocity of the first body which is moving upwards.
${m_2} = 1.9kg$ mass of second body
${v_2} = - 13m{s^{ - 1}}$ velocity of the second body which is moving downward, it’s negative as it’s moving in the opposite direction to that of the first body.
Let $m = {m_1} + {m_2} = 4.9kg$ be the combined mass of balls after inelastic collision and v be the velocity with which both balls together rise upward.
So, Initial momentum of system P can be written as
$P = {m_1}{v_1} + {m_2}{v_2}$ on putting the values we get,
$P = 54 - 24.7$
$P = 29.3kgm{s^{ - 1}} \to (i)$
Now, final momentum of system P’ can be written as
$P' = ({m_1} + {m_2})v$ on putting the values we get,
$P' = 4.9v \to (ii)$
now, according to law of conservation of momentum we know that,
initial momentum is equal to final momentum so,
$P = P'$ so from equations (i) and (ii) we get,
$29.3 = 4.9v$
$ \Rightarrow v = 5.98m{s^{ - 1}}$
Now, both balls stick together and moves upwards against the force of gravity with initial velocity of $v = 5.98m{s^{ - 1}}$ and acceleration due to gravity acts downward against the motion of balls so, $a = g = - 9.8m{s^{ - 2}}$ and let h be the height to which ball moves before coming to rest so, final velocity will be zero.
Now, using newton’s equation of motion we have,
\[{\left( {{v_{final}}} \right)^2} - {\left( {{v_{initial}}} \right)^2} = 2as\].
Now, we know that ${v_{initial}} = v = 5.98m{s^{ - 1}}$, ${v_{final}} = 0$, $s = h$, and $a = g = - 9.8m{s^{ - 2}}$.
Now, substituting these values, we get,
$0 - {(5.98)^2} = - 2(9.8)h$
Simplifying the calculations, we get,
$35.76 = 19.6h$
$ \Rightarrow h = 1.35m$
Hence, balls moved to a height of $1.35m$ above the collision point.
Note:
It should be remembered that, in a perfectly inelastic collision both bodies stick together after collision and move together with same velocity and here it was mentioned to ignore air drag. air drag is the resistance to motion due to air particles which slows down the velocity of bodies.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE