
A conical tank (with vertex down) is \[10\] feet across the top and \[12\] feet deep. Water is flowing into the tank at a rate of \[5\] cubic feet per minute. Find the rate of change of the depth of the water when the water is \[4\] feet deep.
Answer
388.8k+ views
Hint: In this question,we need to find the rate of change of the depth of the water when the water is \[4\] feet deep. Given that the radius of the tank is \[10\] feet. From this, we can find the radius of the tank. Also the height of the tank is \[12\] feet and the water is \[8\] feet deep. The rate of change of the depth of the water can be found by differentiating the volume of the cone. The differentiation is nothing but a rate of change of function with respect to an independent variable given in the function. First let us consider the radius of the tank to be \[r\] and \[h\] be the height of the tank . We need to substitute the value of \[r\] in the volume formula. Then on differentiating we can find the rate of change of the depth of the water when the water is \[4\] feet deep.
Formula used:
The volume of the cone ,
\[V = \dfrac{1}{3}\ \pi r^{2}\ h\]
Where \[r\] is the radius of the cone and \[h\] is the height of the cone.
Derivative rule used :
\[\dfrac{d}{dx}x^{n} = nx^{n – 1}\]
Complete step-by-step answer:
Let us consider the radius of the tank to be \[r\] and \[h\] be the height of the tank .
Given, the conical tank is \[10\] feet across and \[12\] feet deep, that is the radius of the tank is \[10\] feet and height is \[12\] feet.
\[r = 10\]
By relating the radius \[r\] to the height \[h\] ,
\[\Rightarrow \dfrac{r}{h} = \dfrac{10}{12}\]
Thus \[r = \dfrac{5}{6}h\]
We know volume of the cone is \[\dfrac{1}{3}\pi r^{2}h\]
\[V = \dfrac{1}{3}\pi r^{2}h\]
By substituting \[r = \dfrac{5}{6}h\]
We get,
\[V = \dfrac{1}{3}\pi{(\dfrac{5}{6}h)}^{2}h\]
On simplifying,
We get,
\[V = \dfrac{25}{108}\pi h^{3}\]
On differentiating \[V\] with respect to time \[t\] ,
We get,
\[\dfrac{dV}{dt} = \dfrac{25}{108}\pi\left( 3h^{2}\dfrac{dh}{dt} \right)\]
Also given the rate change of volume is \[5\] cubic feet per minute.
By substituting the value of volume rate,
We get,
\[5 = \dfrac{25}{108}\pi\left( 3h^{2}\dfrac{dh}{dt} \right)\]
We need to find the rate of change of the depth of the water when the water is \[4\] feet deep,
By substituting the value of \[h = 4\] and \[\pi = 3.14\] ,
We get,
\[5 = \dfrac{25}{108}\left( 3.14 \right)\left( 3\left( 4 \right)^{2}\dfrac{dh}{dt} \right)\]
On simplifying,
We get,
\[5 = 0.719\left( (48)\dfrac{dh}{dx} \right)\]
On multiplying the term inside,
We get,
\[5 = 34.5\dfrac{dh}{dt}\]
By rewriting the terms,
We get,
\[\dfrac{dh}{dx} = \dfrac{5}{34.5}\]
On simplifying,
We get \[\dfrac{dh}{dt} \approx 0.146\] feet/min
Thus we get the rate of change of the depth of the water is approximately \[0.146\] feet/min.
Final answer :
The rate of change of the depth of the water is approximately \[0.146\] feet/min.
Note: Mathematically , Derivative helps in solving the problems in calculus and in differential equations. The derivative of \[y\] with respect to \[x\] is represented as \[\dfrac{dy}{dx}\] . Here the notation \[\dfrac{dy}{dx}\] is known as Leibniz's notation . In derivation, there are two types of derivative namely first order derivative and second order derivative. A simple example for a derivative is the derivative of \[x^{3}\] is \[3x\] . Derivative is applicable in trigonometric functions also .
Formula used:
The volume of the cone ,
\[V = \dfrac{1}{3}\ \pi r^{2}\ h\]
Where \[r\] is the radius of the cone and \[h\] is the height of the cone.
Derivative rule used :
\[\dfrac{d}{dx}x^{n} = nx^{n – 1}\]
Complete step-by-step answer:

Let us consider the radius of the tank to be \[r\] and \[h\] be the height of the tank .
Given, the conical tank is \[10\] feet across and \[12\] feet deep, that is the radius of the tank is \[10\] feet and height is \[12\] feet.
\[r = 10\]
By relating the radius \[r\] to the height \[h\] ,
\[\Rightarrow \dfrac{r}{h} = \dfrac{10}{12}\]
Thus \[r = \dfrac{5}{6}h\]
We know volume of the cone is \[\dfrac{1}{3}\pi r^{2}h\]
\[V = \dfrac{1}{3}\pi r^{2}h\]
By substituting \[r = \dfrac{5}{6}h\]
We get,
\[V = \dfrac{1}{3}\pi{(\dfrac{5}{6}h)}^{2}h\]
On simplifying,
We get,
\[V = \dfrac{25}{108}\pi h^{3}\]
On differentiating \[V\] with respect to time \[t\] ,
We get,
\[\dfrac{dV}{dt} = \dfrac{25}{108}\pi\left( 3h^{2}\dfrac{dh}{dt} \right)\]
Also given the rate change of volume is \[5\] cubic feet per minute.
By substituting the value of volume rate,
We get,
\[5 = \dfrac{25}{108}\pi\left( 3h^{2}\dfrac{dh}{dt} \right)\]
We need to find the rate of change of the depth of the water when the water is \[4\] feet deep,
By substituting the value of \[h = 4\] and \[\pi = 3.14\] ,
We get,
\[5 = \dfrac{25}{108}\left( 3.14 \right)\left( 3\left( 4 \right)^{2}\dfrac{dh}{dt} \right)\]
On simplifying,
We get,
\[5 = 0.719\left( (48)\dfrac{dh}{dx} \right)\]
On multiplying the term inside,
We get,
\[5 = 34.5\dfrac{dh}{dt}\]
By rewriting the terms,
We get,
\[\dfrac{dh}{dx} = \dfrac{5}{34.5}\]
On simplifying,
We get \[\dfrac{dh}{dt} \approx 0.146\] feet/min
Thus we get the rate of change of the depth of the water is approximately \[0.146\] feet/min.
Final answer :
The rate of change of the depth of the water is approximately \[0.146\] feet/min.
Note: Mathematically , Derivative helps in solving the problems in calculus and in differential equations. The derivative of \[y\] with respect to \[x\] is represented as \[\dfrac{dy}{dx}\] . Here the notation \[\dfrac{dy}{dx}\] is known as Leibniz's notation . In derivation, there are two types of derivative namely first order derivative and second order derivative. A simple example for a derivative is the derivative of \[x^{3}\] is \[3x\] . Derivative is applicable in trigonometric functions also .
Recently Updated Pages
The correct geometry and hybridization for XeF4 are class 11 chemistry CBSE

Water softening by Clarks process uses ACalcium bicarbonate class 11 chemistry CBSE

With reference to graphite and diamond which of the class 11 chemistry CBSE

A certain household has consumed 250 units of energy class 11 physics CBSE

The lightest metal known is A beryllium B lithium C class 11 chemistry CBSE

What is the formula mass of the iodine molecule class 11 chemistry CBSE

Trending doubts
Why was the Vernacular Press Act passed by British class 11 social science CBSE

Arrange Water ethanol and phenol in increasing order class 11 chemistry CBSE

Name the nuclear plant located in Uttar Pradesh class 11 social science CBSE

What steps did the French revolutionaries take to create class 11 social science CBSE

How did silk routes link the world Explain with three class 11 social science CBSE

What are the various challenges faced by political class 11 social science CBSE
