Answer
Verified
385.2k+ views
Hint: In physics, when the force acts on a body and it causes a displacement in the body , it’s called body has done some work and when this work done by a force is independent of path taken, then it’s called conservative force and this conservative force is related with potential energy as $F = - \dfrac{{\partial U}}{{\partial x}}$.
Complete step by step answer:
(a) It’s given us that $U(0) = 27J$ and we can write $F = - \dfrac{{\partial U}}{{\partial x}}$ as
\[ - U = \int\limits_0^x {(6x - 12)dx} \]
$\Rightarrow - U = (3{x^2} - 12x)$
$\therefore U = 27 + 12x - 3{x^2}$
Hence, the function of U is $U(x) = 27 + 12x - 3{x^2}$
(b) To find maximum potential energy its derivative must be zero which is the given force, hence
\[(6.0x - 12) = 0\]
$x = 2$
Hence finding $U(x) = 27 + 12x - 3{x^2}$ at $x = 2$
$U(2) = 27 + 24 - 12$
${U_{\max }}(2) = 39Joule$
Hence, maximum potential energy is ${U_{\max }}(2) = 39\,Joule$
(c) Equating this equation $U(x) = 27 + 12x - 3{x^2}$ to zero we get,
$27 + 12x - 3{x^2} = 0$
Or Taking common factor we can write
$(x + 1.6)(x - 5.6) = 0$
Equate both factors to zero we get,
$\therefore x = - 1.6\,m$
(d) From part (c) we get, $(x + 1.6)(x - 5.6) = 0$
$x = 5.6$
Hence, $x = 5.6$ is the positive value of $x$ at which potential energy is zero.
Note: It should be remembered that, partial derivative of potential energy is taken because force is a vector quantity and its derivative has to be taken in every component’s direction. The relation between force and potential energy can also be written in form of gradient at $F = - \vec \nabla U$
Complete step by step answer:
(a) It’s given us that $U(0) = 27J$ and we can write $F = - \dfrac{{\partial U}}{{\partial x}}$ as
\[ - U = \int\limits_0^x {(6x - 12)dx} \]
$\Rightarrow - U = (3{x^2} - 12x)$
$\therefore U = 27 + 12x - 3{x^2}$
Hence, the function of U is $U(x) = 27 + 12x - 3{x^2}$
(b) To find maximum potential energy its derivative must be zero which is the given force, hence
\[(6.0x - 12) = 0\]
$x = 2$
Hence finding $U(x) = 27 + 12x - 3{x^2}$ at $x = 2$
$U(2) = 27 + 24 - 12$
${U_{\max }}(2) = 39Joule$
Hence, maximum potential energy is ${U_{\max }}(2) = 39\,Joule$
(c) Equating this equation $U(x) = 27 + 12x - 3{x^2}$ to zero we get,
$27 + 12x - 3{x^2} = 0$
Or Taking common factor we can write
$(x + 1.6)(x - 5.6) = 0$
Equate both factors to zero we get,
$\therefore x = - 1.6\,m$
(d) From part (c) we get, $(x + 1.6)(x - 5.6) = 0$
$x = 5.6$
Hence, $x = 5.6$ is the positive value of $x$ at which potential energy is zero.
Note: It should be remembered that, partial derivative of potential energy is taken because force is a vector quantity and its derivative has to be taken in every component’s direction. The relation between force and potential energy can also be written in form of gradient at $F = - \vec \nabla U$
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE