Answer
Verified
462.9k+ views
Hint: When a current is flowing through a conductor a magnetic force is developed around the conductor. When an external free moving charge or current carrying conductor will come into contact with this magnetic field the conductor will experience a certain amount of force. Due to this force, the free body will undergo some sort of motion.
Complete answer:
Ina straight current carrying conductor a magnetic field is developed around the conductor which is assumed to be in a circular path around the conductor.
The magnetic field developed around the conductor is by Biot-savart's law.
According to Biot-savart's law, the magnetic field is given
\[d\vec{B}={{\mu }_{0}}\dfrac{Idl\sin \theta }{4\pi {{r}^{2}}}\]
So as derived from Biot-savart's law the magnetic field around the conductor CD is,
\[d\vec{B}={{\mu }_{0}}\dfrac{{{I}_{2}}}{2\pi r}\]
The intensity of this magnetic field decreases as we move away from the conductor. So the magnitude of the magnetic field decreases along the wire AB due to wire CD.
On each element (small element) of wire AB, the force experienced will be equal to ${{I}_{1}}Bdr$
As a result of which the wire AB will perform both translational and rotational motions. The translation motion will be due to the reason that all forces acting in upward direction and rotation will be due to all forces being different in magnitudes.
So the correct option is option C.
Note:
When there is a change in the electric or magnetic field along a conductor some amount of emf is induced in the conductor. This emf is termed as induced emf. This emf opposes the changes occurring and due to that induced is in the opposite direction of the force-producing it.
Complete answer:
Ina straight current carrying conductor a magnetic field is developed around the conductor which is assumed to be in a circular path around the conductor.
The magnetic field developed around the conductor is by Biot-savart's law.
According to Biot-savart's law, the magnetic field is given
\[d\vec{B}={{\mu }_{0}}\dfrac{Idl\sin \theta }{4\pi {{r}^{2}}}\]
So as derived from Biot-savart's law the magnetic field around the conductor CD is,
\[d\vec{B}={{\mu }_{0}}\dfrac{{{I}_{2}}}{2\pi r}\]
The intensity of this magnetic field decreases as we move away from the conductor. So the magnitude of the magnetic field decreases along the wire AB due to wire CD.
On each element (small element) of wire AB, the force experienced will be equal to ${{I}_{1}}Bdr$
As a result of which the wire AB will perform both translational and rotational motions. The translation motion will be due to the reason that all forces acting in upward direction and rotation will be due to all forces being different in magnitudes.
So the correct option is option C.
Note:
When there is a change in the electric or magnetic field along a conductor some amount of emf is induced in the conductor. This emf is termed as induced emf. This emf opposes the changes occurring and due to that induced is in the opposite direction of the force-producing it.
Recently Updated Pages
There are two sample of HCI having molarity 1M and class 11 chemistry JEE_Main
For the reaction I + ClO3 + H2SO4 to Cl + HSO4 + I2 class 11 chemistry JEE_Main
What happens to the gravitational force between two class 11 physics NEET
In the reaction 2NH4 + + 6NO3 aq + 4H + aq to 6NO2g class 11 chemistry JEE_Main
A weightless rod is acted upon by upward parallel forces class 11 phy sec 1 JEE_Main
From a uniform circular disc of radius R and mass 9 class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE