Answer
Verified
450.6k+ views
Hint:The displacement of the cyclist after covering the revolution is twice the radius of the circular track. Use the formula for average velocity of the body to determine the average velocity of the cyclist.
Formula used:
The average velocity of the body is,
\[{v_{avg}} = \dfrac{{{x_f} - {x_i}}}{t}\]
Here, \[{x_f}\] is the final position, \[{x_i}\] is the initial position and t is the elapsed time.
Complete step by step answer:
We assume the initial position of the cyclist on the circular track is \[{S_1}\] and the final position on the circular track is \[{S_2}\] as shown in the figure below.
We have the formula for average velocity,
\[{\text{Average velocity}} = \dfrac{{{\text{Displacement}}}}{{{\text{total}}\,\,{\text{time}}}}\]
In the above figure, the displacement of the cyclist is, \[{S_2} - {S_1}\]. Since the radius of the circular track is R, the displacement of the cyclist will be 2R. Therefore, we can express the average velocity of the cyclist as,
\[{v_{avg}} = \dfrac{{2R}}{t}\]
Here, t is the time taken by the cyclist to complete a semicircle.
Substituting 40 m for R and 40 sec for t in the above equation, we get,
\[{v_{avg}} = \dfrac{{2\left( {40} \right)}}{{40}}\]
\[ \therefore {v_{avg}} = 2\,{\text{m/s}}\]
Therefore, the average velocity of the cyclist is 2 m/s.So, the correct answer is option C.
Note: Displacement of the body is the difference between its final and initial position. Therefore, the displacement in this case is twice the radius. Now the term distance covered by the cyclist means the circumference of half circle. Therefore, the distance covered by the cyclist is \[\pi R\]. Thus, remember the difference between distance and displacement.
Formula used:
The average velocity of the body is,
\[{v_{avg}} = \dfrac{{{x_f} - {x_i}}}{t}\]
Here, \[{x_f}\] is the final position, \[{x_i}\] is the initial position and t is the elapsed time.
Complete step by step answer:
We assume the initial position of the cyclist on the circular track is \[{S_1}\] and the final position on the circular track is \[{S_2}\] as shown in the figure below.
We have the formula for average velocity,
\[{\text{Average velocity}} = \dfrac{{{\text{Displacement}}}}{{{\text{total}}\,\,{\text{time}}}}\]
In the above figure, the displacement of the cyclist is, \[{S_2} - {S_1}\]. Since the radius of the circular track is R, the displacement of the cyclist will be 2R. Therefore, we can express the average velocity of the cyclist as,
\[{v_{avg}} = \dfrac{{2R}}{t}\]
Here, t is the time taken by the cyclist to complete a semicircle.
Substituting 40 m for R and 40 sec for t in the above equation, we get,
\[{v_{avg}} = \dfrac{{2\left( {40} \right)}}{{40}}\]
\[ \therefore {v_{avg}} = 2\,{\text{m/s}}\]
Therefore, the average velocity of the cyclist is 2 m/s.So, the correct answer is option C.
Note: Displacement of the body is the difference between its final and initial position. Therefore, the displacement in this case is twice the radius. Now the term distance covered by the cyclist means the circumference of half circle. Therefore, the distance covered by the cyclist is \[\pi R\]. Thus, remember the difference between distance and displacement.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
State and prove Bernoullis theorem class 11 physics CBSE