Answer
Verified
459k+ views
Hint: The molecular formula of butane is ${C_4}{H_{10}}$. First, calculate the energy given by one mole of butane. Then calculate the total energy given by 11.2 kg of butane gas. From that energy, we can find the number of days the cylinder would last.
Complete step by step solution:
We will first calculate the energy given per mole of butane and then we will calculate the total energy we will obtain by the combustion of all the butane gas which is 11.2 kg. Then, we can find the number of the cylinder that will last.
- We know that the molecular formula of butane is ${C_4}{H_{10}}$. So,
Molecular mass of butane = 4(Atomic mass of C)+ 10(Atomic mass of H)
Molecular mass of butane = 4(12) + 10(1) = 58$gmmo{l^{ - 1}}$
- We are given that 1 mole of butane gives 2658 kJ energy.
So, we can write that 58gm of butane gives 2658 kJ energy, so 11200 gm of butane will give $\dfrac{{11200 \times 2658}}{{58}} = 513268.96kJ$
Here, we have written 58 gm of butane because that much weight is present in 1 mole of butane.
- So, it is given that 20000kJ is the energy needed for cooking per day. So, 513268.96kJ energy will be enough for $\dfrac{{513268.96 \times 1}}{{20000}} = 25.66 \approx 26$ days.
Thus, we can say that the cylinder will last for 26 days.
Therefore, the correct answer is (B).
Note: Remember that here the enthalpy change given is a negative value. This means that the energy is released by combustion of butane gas. The enthalpy change is positive in the reaction that absorbs the heat.
Complete step by step solution:
We will first calculate the energy given per mole of butane and then we will calculate the total energy we will obtain by the combustion of all the butane gas which is 11.2 kg. Then, we can find the number of the cylinder that will last.
- We know that the molecular formula of butane is ${C_4}{H_{10}}$. So,
Molecular mass of butane = 4(Atomic mass of C)+ 10(Atomic mass of H)
Molecular mass of butane = 4(12) + 10(1) = 58$gmmo{l^{ - 1}}$
- We are given that 1 mole of butane gives 2658 kJ energy.
So, we can write that 58gm of butane gives 2658 kJ energy, so 11200 gm of butane will give $\dfrac{{11200 \times 2658}}{{58}} = 513268.96kJ$
Here, we have written 58 gm of butane because that much weight is present in 1 mole of butane.
- So, it is given that 20000kJ is the energy needed for cooking per day. So, 513268.96kJ energy will be enough for $\dfrac{{513268.96 \times 1}}{{20000}} = 25.66 \approx 26$ days.
Thus, we can say that the cylinder will last for 26 days.
Therefore, the correct answer is (B).
Note: Remember that here the enthalpy change given is a negative value. This means that the energy is released by combustion of butane gas. The enthalpy change is positive in the reaction that absorbs the heat.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What happens when dilute hydrochloric acid is added class 10 chemistry JEE_Main
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE