A cylinder of gas is assumed to contain 11.2 kg of butane. If a normal family needs 20000 kJ of energy per day for cooking. How long will the cylinder last if the enthalpy of combustion, $\Delta H = - 2658kJ/mol$ for butane.
(A) 35 days
(B) 26 days
(C) 29 days
(D) 24 days
Answer
Verified
472.8k+ views
Hint: The molecular formula of butane is ${C_4}{H_{10}}$. First, calculate the energy given by one mole of butane. Then calculate the total energy given by 11.2 kg of butane gas. From that energy, we can find the number of days the cylinder would last.
Complete step by step solution:
We will first calculate the energy given per mole of butane and then we will calculate the total energy we will obtain by the combustion of all the butane gas which is 11.2 kg. Then, we can find the number of the cylinder that will last.
- We know that the molecular formula of butane is ${C_4}{H_{10}}$. So,
Molecular mass of butane = 4(Atomic mass of C)+ 10(Atomic mass of H)
Molecular mass of butane = 4(12) + 10(1) = 58$gmmo{l^{ - 1}}$
- We are given that 1 mole of butane gives 2658 kJ energy.
So, we can write that 58gm of butane gives 2658 kJ energy, so 11200 gm of butane will give $\dfrac{{11200 \times 2658}}{{58}} = 513268.96kJ$
Here, we have written 58 gm of butane because that much weight is present in 1 mole of butane.
- So, it is given that 20000kJ is the energy needed for cooking per day. So, 513268.96kJ energy will be enough for $\dfrac{{513268.96 \times 1}}{{20000}} = 25.66 \approx 26$ days.
Thus, we can say that the cylinder will last for 26 days.
Therefore, the correct answer is (B).
Note: Remember that here the enthalpy change given is a negative value. This means that the energy is released by combustion of butane gas. The enthalpy change is positive in the reaction that absorbs the heat.
Complete step by step solution:
We will first calculate the energy given per mole of butane and then we will calculate the total energy we will obtain by the combustion of all the butane gas which is 11.2 kg. Then, we can find the number of the cylinder that will last.
- We know that the molecular formula of butane is ${C_4}{H_{10}}$. So,
Molecular mass of butane = 4(Atomic mass of C)+ 10(Atomic mass of H)
Molecular mass of butane = 4(12) + 10(1) = 58$gmmo{l^{ - 1}}$
- We are given that 1 mole of butane gives 2658 kJ energy.
So, we can write that 58gm of butane gives 2658 kJ energy, so 11200 gm of butane will give $\dfrac{{11200 \times 2658}}{{58}} = 513268.96kJ$
Here, we have written 58 gm of butane because that much weight is present in 1 mole of butane.
- So, it is given that 20000kJ is the energy needed for cooking per day. So, 513268.96kJ energy will be enough for $\dfrac{{513268.96 \times 1}}{{20000}} = 25.66 \approx 26$ days.
Thus, we can say that the cylinder will last for 26 days.
Therefore, the correct answer is (B).
Note: Remember that here the enthalpy change given is a negative value. This means that the energy is released by combustion of butane gas. The enthalpy change is positive in the reaction that absorbs the heat.
Recently Updated Pages
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Statement I Reactivity of aluminium decreases when class 11 chemistry CBSE
Trending doubts
10 examples of friction in our daily life
The correct order of melting point of 14th group elements class 11 chemistry CBSE
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE