A cylindrical cavity of diameter ‘a’ exists inside a cylinder of diameter ‘2a’ as shown in the given figure. Both the cylinder and the cavity are infinitely long. A long uniform current density J flows along the length. The magnitude of the magnetic field at the point P is given by \[\dfrac{N}{12}{{\mu }_{0}}J\].Then the value of N is?
A.5
B.6
C.7
D.8
Answer
Verified
473.4k+ views
Hint: The magnetic field due to infinitely long cylinders can be used for both the cavity and the cylindrical cable. The resultant magnetic field due to these structures will be given an equation with the known variables from which the unknown can be derived.
Complete answer:
Let us consider an infinitely long cylindrical cable as the one given in the question.
According to Biot-Savart law, a current carrying element influences any point with a magnetics field. The strength and orientation is mainly dependent on the magnitude of the current and distance from the element to the point. It is given by –
\[B(r)=\dfrac{{{\mu }_{o}}}{4\pi }\int\limits_{c}{\dfrac{Idl\times \overrightarrow{r}}{{{r}^{3}}}}\]
From this we can derive the magnetic field at a point P, which is on the surface of the infinitely long cylindrical cable.
The magnetic field at point P due to cavity is given by -
\[{{B}_{1}}=\dfrac{{{\mu }_{0}}Ja}{2}\]
The magnetic field at point P due to the cylinder is given by –
\[\begin{align}
& {{B}_{2}}=\dfrac{{{\mu }_{0}}J{{\left( \dfrac{a}{2} \right)}^{2}}}{2\times \dfrac{3a}{2}} \\
& {{B}_{2}}=\dfrac{{{\mu }_{0}}Ja}{12} \\
\end{align}\]
The total magnetic field is –
\[\begin{align}
& B={{B}_{1}}+{{B}_{2}} \\
& B=\dfrac{{{\mu }_{0}}Ja}{2}+\dfrac{{{\mu }_{0}}Ja}{12} \\
& B=\dfrac{5{{\mu }_{0}}Ja}{12} \\
& \Rightarrow N=5 \\
\end{align}\]
The unknown is 5.
The correct option is A.
Additional Information:
Ampere’s circuital law gives the magnetic field due to a point, whereas the Biot-Savart law gives the magnetic field at a point.
Note:
The derivation of the magnetic field at a point due to a cylinder from Biot-Savart involves considering the current element as a circle. On integrating to infinity we will find the appropriate equation for the magnetic at a point which is away, on or inside the cylinder.
Complete answer:
Let us consider an infinitely long cylindrical cable as the one given in the question.
According to Biot-Savart law, a current carrying element influences any point with a magnetics field. The strength and orientation is mainly dependent on the magnitude of the current and distance from the element to the point. It is given by –
\[B(r)=\dfrac{{{\mu }_{o}}}{4\pi }\int\limits_{c}{\dfrac{Idl\times \overrightarrow{r}}{{{r}^{3}}}}\]
From this we can derive the magnetic field at a point P, which is on the surface of the infinitely long cylindrical cable.
The magnetic field at point P due to cavity is given by -
\[{{B}_{1}}=\dfrac{{{\mu }_{0}}Ja}{2}\]
The magnetic field at point P due to the cylinder is given by –
\[\begin{align}
& {{B}_{2}}=\dfrac{{{\mu }_{0}}J{{\left( \dfrac{a}{2} \right)}^{2}}}{2\times \dfrac{3a}{2}} \\
& {{B}_{2}}=\dfrac{{{\mu }_{0}}Ja}{12} \\
\end{align}\]
The total magnetic field is –
\[\begin{align}
& B={{B}_{1}}+{{B}_{2}} \\
& B=\dfrac{{{\mu }_{0}}Ja}{2}+\dfrac{{{\mu }_{0}}Ja}{12} \\
& B=\dfrac{5{{\mu }_{0}}Ja}{12} \\
& \Rightarrow N=5 \\
\end{align}\]
The unknown is 5.
The correct option is A.
Additional Information:
Ampere’s circuital law gives the magnetic field due to a point, whereas the Biot-Savart law gives the magnetic field at a point.
Note:
The derivation of the magnetic field at a point due to a cylinder from Biot-Savart involves considering the current element as a circle. On integrating to infinity we will find the appropriate equation for the magnetic at a point which is away, on or inside the cylinder.
Recently Updated Pages
Master Class 11 Accountancy: Engaging Questions & Answers for Success
Glucose when reduced with HI and red Phosphorus gives class 11 chemistry CBSE
The highest possible oxidation states of Uranium and class 11 chemistry CBSE
Find the value of x if the mode of the following data class 11 maths CBSE
Which of the following can be used in the Friedel Crafts class 11 chemistry CBSE
A sphere of mass 40 kg is attracted by a second sphere class 11 physics CBSE
Trending doubts
10 examples of friction in our daily life
Difference Between Prokaryotic Cells and Eukaryotic Cells
One Metric ton is equal to kg A 10000 B 1000 C 100 class 11 physics CBSE
State and prove Bernoullis theorem class 11 physics CBSE
What organs are located on the left side of your body class 11 biology CBSE
Define least count of vernier callipers How do you class 11 physics CBSE