Answer
Verified
433.8k+ views
Hint To solve this question, we need to use the formula for the heat conducted across a conductor per unit time. We need to assume the dimensions of the rod and the temperature of the reservoir. Putting these in the formula, we will get the expression for \[Q\]. Then applying the same formula for the second case, we will get the expression for the heat conducted in time $t$, which when compared with the previous expression will come in terms of \[Q\].
Formula used: The formula used to solve this question is given by
$\dfrac{q}{T} = k\dfrac{{A\Delta T}}{l}$, here $Q$ is the heat conducted in time $t$ across a conductor of length $l$, area of cross section $A$ and the material of thermal conductivity of $k$, and is subjected to the temperature difference of $\Delta T$ across its ends.
Complete step-by-step solution:
Let the length, the area of cross section, and the thermal conductivity of the metallic rod be $L$, ${A_1}$, and $K$ respectively. Also, let the temperature of the thermal reservoirs be ${T_1}$ and ${T_2}$. We can represent this situation in the below figure.
We know that the rate of heat conducted per unit time is given by
$\dfrac{q}{T} = k\dfrac{{A\Delta T}}{l}$ (1)
Substituting $k = K$, \[A = {A_1}\], $l = L$, $\Delta T = {T_2} - {T_1}$, $q = Q$ and $T = t$, we get
$\dfrac{Q}{t} = K\dfrac{{{A_1}\left( {{T_2} - {T_1}} \right)}}{L}$....................(2)
Now, according to the question, the rod is melted and from that a new rod of half the radius is formed. We know that the area of cross section is related to the radius as
${A_1} = \pi {r^2}$................(3)
Putting $r' = \dfrac{r}{2}$, we get
${A_2} = \pi {\left( {\dfrac{r}{2}} \right)^2}$
${A_2} = \dfrac{{\pi {r^2}}}{4}$
Putting (3) in the above equation, we get
${A_2} = \dfrac{{{A_1}}}{4}$...................(4)
Since the material of the rod is still the same, there is no change in the thermal conductivity. Also, there is no change in the length and the temperature of the reservoirs. Therefore, if $Q'$ is the heat conducted by the new rod in time $t$, then it is given by
$\dfrac{{Q'}}{t} = K\dfrac{{{A_2}\left( {{T_2} - {T_1}} \right)}}{L}$ ……………...(5)
Dividing (5) by (2) we get
$\dfrac{{\dfrac{{Q'}}{t}}}{{\dfrac{Q}{t}}} = \dfrac{{K\dfrac{{{A_2}\left( {{T_2} - {T_1}} \right)}}{L}}}{{K\dfrac{{{A_1}\left( {{T_2} - {T_1}} \right)}}{L}}}$
\[ \Rightarrow \dfrac{{Q'}}{Q} = \dfrac{{{A_2}}}{{{A_1}}}\]
Putting (4) above, we get
\[\dfrac{{Q'}}{Q} = \dfrac{{{A_1}}}{{4{A_1}}}\]
\[ \Rightarrow Q' = \dfrac{Q}{4}\]
Hence, the correct answer is option A.
Note: If we do not remember the formula for the heat conducted per unit time, then we can use the analogy between the electric current and the heat to derive the same. As we know that the resistance is given by $R = \rho \dfrac{l}{A}$ and the electric current is given by $I = \dfrac{V}{R}$. Combining these two, we get the current as $I = \dfrac{{AV}}{{\rho l}}$. The electric current is equivalent to the heat per unit time, the potential difference is equivalent to the temperature difference, and the reciprocal of resistivity is equivalent to the thermal conductivity.
Formula used: The formula used to solve this question is given by
$\dfrac{q}{T} = k\dfrac{{A\Delta T}}{l}$, here $Q$ is the heat conducted in time $t$ across a conductor of length $l$, area of cross section $A$ and the material of thermal conductivity of $k$, and is subjected to the temperature difference of $\Delta T$ across its ends.
Complete step-by-step solution:
Let the length, the area of cross section, and the thermal conductivity of the metallic rod be $L$, ${A_1}$, and $K$ respectively. Also, let the temperature of the thermal reservoirs be ${T_1}$ and ${T_2}$. We can represent this situation in the below figure.
We know that the rate of heat conducted per unit time is given by
$\dfrac{q}{T} = k\dfrac{{A\Delta T}}{l}$ (1)
Substituting $k = K$, \[A = {A_1}\], $l = L$, $\Delta T = {T_2} - {T_1}$, $q = Q$ and $T = t$, we get
$\dfrac{Q}{t} = K\dfrac{{{A_1}\left( {{T_2} - {T_1}} \right)}}{L}$....................(2)
Now, according to the question, the rod is melted and from that a new rod of half the radius is formed. We know that the area of cross section is related to the radius as
${A_1} = \pi {r^2}$................(3)
Putting $r' = \dfrac{r}{2}$, we get
${A_2} = \pi {\left( {\dfrac{r}{2}} \right)^2}$
${A_2} = \dfrac{{\pi {r^2}}}{4}$
Putting (3) in the above equation, we get
${A_2} = \dfrac{{{A_1}}}{4}$...................(4)
Since the material of the rod is still the same, there is no change in the thermal conductivity. Also, there is no change in the length and the temperature of the reservoirs. Therefore, if $Q'$ is the heat conducted by the new rod in time $t$, then it is given by
$\dfrac{{Q'}}{t} = K\dfrac{{{A_2}\left( {{T_2} - {T_1}} \right)}}{L}$ ……………...(5)
Dividing (5) by (2) we get
$\dfrac{{\dfrac{{Q'}}{t}}}{{\dfrac{Q}{t}}} = \dfrac{{K\dfrac{{{A_2}\left( {{T_2} - {T_1}} \right)}}{L}}}{{K\dfrac{{{A_1}\left( {{T_2} - {T_1}} \right)}}{L}}}$
\[ \Rightarrow \dfrac{{Q'}}{Q} = \dfrac{{{A_2}}}{{{A_1}}}\]
Putting (4) above, we get
\[\dfrac{{Q'}}{Q} = \dfrac{{{A_1}}}{{4{A_1}}}\]
\[ \Rightarrow Q' = \dfrac{Q}{4}\]
Hence, the correct answer is option A.
Note: If we do not remember the formula for the heat conducted per unit time, then we can use the analogy between the electric current and the heat to derive the same. As we know that the resistance is given by $R = \rho \dfrac{l}{A}$ and the electric current is given by $I = \dfrac{V}{R}$. Combining these two, we get the current as $I = \dfrac{{AV}}{{\rho l}}$. The electric current is equivalent to the heat per unit time, the potential difference is equivalent to the temperature difference, and the reciprocal of resistivity is equivalent to the thermal conductivity.
Recently Updated Pages
A wire of length L and radius r is clamped rigidly class 11 physics JEE_Main
For which of the following reactions H is equal to class 11 chemistry JEE_Main
For the redox reaction MnO4 + C2O42 + H + to Mn2 + class 11 chemistry JEE_Main
In the reaction 2FeCl3 + H2S to 2FeCl2 + 2HCl + S class 11 chemistry JEE_Main
One mole of a nonideal gas undergoes a change of state class 11 chemistry JEE_Main
A stone is projected with speed 20 ms at angle 37circ class 11 physics JEE_Main
Trending doubts
Which is the longest day and shortest night in the class 11 sst CBSE
Who was the Governor general of India at the time of class 11 social science CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
In a democracy the final decisionmaking power rests class 11 social science CBSE
What organs are located on the left side of your body class 11 biology CBSE