Answer
Verified
500.7k+ views
Hint: - Volume of spherical ball\[{\text{ = }}\dfrac{4}{3}\pi r_1^3\], (where ${r_1}$is the radius of the ball), and the volume of cylinder\[{{\text{V}}_C} = \pi {r^2}h\], (where r is the radius and h is the height of the cylinder)
Given data:
Radius of cylindrical tube \[\left( r \right) = 12cm\]
Depth of water in cylindrical tube\[\left( h \right) = 20cm\]
Volume of cylinder without rise\[{{\text{V}}_C} = \pi {r^2}h = \pi {\left( {12} \right)^2}\left( {20} \right) = 2880\pi c{m^3}\]
After dropping the spherical ball the level of water is raised by 6.75 cm.
$ \Rightarrow $New depth of water in cylindrical tube\[\left( {{h_1}} \right) = 20 + 6.75 = 26.75cm\]
$ \Rightarrow $New cylindrical volume \[{\text{ = }}\pi {r^2}{h_1} = \pi {\left( {12} \right)^2}\left( {26.75} \right) = 3852\pi c{m^3}\]
Volume of spherical ball\[{\text{ = }}\dfrac{4}{3}\pi r_1^3\], (where ${r_1}$is the radius of the ball)
Therefore new cylindrical volume $ = $ Volume of spherical ball$ + $ Volume of cylinder \[{{\text{V}}_C}\]without rise
\[
\Rightarrow 3852\pi = \dfrac{4}{3}\pi r_1^3 + 2880\pi \\
\Rightarrow \dfrac{4}{3}\pi r_i^3 = 972\pi \\
\Rightarrow r_1^3 = 729 = {\left( 9 \right)^3} \\
\Rightarrow {r_1} = 9cm \\
\]
So, the radius of the ball is 9cm.
Note: - In such types of questions always remember the formula of volume of cylinder and spherical ball which is stated above, then using these formulas, calculate the new volume of the cylindrical tub, when spherical ball is dropped in cylindrical tub and simplify, we will get the required radius of the ball.
Given data:
Radius of cylindrical tube \[\left( r \right) = 12cm\]
Depth of water in cylindrical tube\[\left( h \right) = 20cm\]
Volume of cylinder without rise\[{{\text{V}}_C} = \pi {r^2}h = \pi {\left( {12} \right)^2}\left( {20} \right) = 2880\pi c{m^3}\]
After dropping the spherical ball the level of water is raised by 6.75 cm.
$ \Rightarrow $New depth of water in cylindrical tube\[\left( {{h_1}} \right) = 20 + 6.75 = 26.75cm\]
$ \Rightarrow $New cylindrical volume \[{\text{ = }}\pi {r^2}{h_1} = \pi {\left( {12} \right)^2}\left( {26.75} \right) = 3852\pi c{m^3}\]
Volume of spherical ball\[{\text{ = }}\dfrac{4}{3}\pi r_1^3\], (where ${r_1}$is the radius of the ball)
Therefore new cylindrical volume $ = $ Volume of spherical ball$ + $ Volume of cylinder \[{{\text{V}}_C}\]without rise
\[
\Rightarrow 3852\pi = \dfrac{4}{3}\pi r_1^3 + 2880\pi \\
\Rightarrow \dfrac{4}{3}\pi r_i^3 = 972\pi \\
\Rightarrow r_1^3 = 729 = {\left( 9 \right)^3} \\
\Rightarrow {r_1} = 9cm \\
\]
So, the radius of the ball is 9cm.
Note: - In such types of questions always remember the formula of volume of cylinder and spherical ball which is stated above, then using these formulas, calculate the new volume of the cylindrical tub, when spherical ball is dropped in cylindrical tub and simplify, we will get the required radius of the ball.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE