A double cone is formed by a revolving right triangle having sides 5 cm, 12 cm and 13 cm about its hypotenuse. Find T.S.A. and volume of double cons so formed.
Answer
Verified
469.8k+ views
Hint:
Firstly, find the heights of the given cones.
Then using that, find the radius of the cones.
Thus, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones and volume of double cone is given by the sum of volumes of both cones.
C.S.A. of a cone $ = \pi rl$
Volume of a cone $ = \dfrac{1}{3}\pi rh$
Complete step by step solution:
Here, a right triangle is revolved about its hypotenuse and thus the above diagram of double cone is formed.
No, in triangle ABC
Let, AB = 5 cm, AC = 12 cm and BC = 13 cm. Also, let $OB = {h_1}$ , $OC = {h_2}$ and \[OA = OD = r\] .
Thus, $OB + OC = 13$ . $\therefore {h_1} + {h_2} = 13$ . … (1)
Also, in triangle ABO, $A{B^2} = A{O^2} + O{B^2}$
$\therefore {5^2} = {h_1}^2 + {r^2}$ … (2)
And, in triangle AOC, $A{C^2} = A{O^2} + O{C^2}$
$\therefore {12^2} = {h_2}^2 + {r^2}$ … (3)
Now, subtracting equation (2) from equation (3), we get
\[
\therefore {12^2} - {5^2} = {h_2}^2 + {r^2} - {h_1}^2 - {r^2} \\
\therefore 144 - 25 = {h_2}^2 - {h_1}^2 \\
\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {{h_2} + {h_1}} \right) \\
\]
Substituting equation (1) in above equation
$\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {13} \right)$
$\therefore {h_2} - {h_1} = \dfrac{{119}}{{13}}$ … (4)
Adding equation (4) and equation (1) we get
$
{h_2} - {h_1} + {h_2} + {h_1} = \dfrac{{119}}{{13}} + 13 \\
\therefore 2{h_2} = \dfrac{{119 + 169}}{{13}} \\
\therefore 2{h_2} = \dfrac{{288}}{{13}} \\
\therefore {h_2} = \dfrac{{144}}{{13}} \\
$
Putting ${h_2} = \dfrac{{144}}{{13}}$ in equation (4) we get
$
\dfrac{{144}}{{13}} - {h_1} = \dfrac{{119}}{{13}} \\
\therefore \dfrac{{144}}{{13}} - \dfrac{{119}}{{13}} = {h_1} \\
\therefore {h_1} = \dfrac{{25}}{{13}} \\
$
Thus, we get ${h_1} = \dfrac{{25}}{{13}}$ and ${h_2} = \dfrac{{144}}{{13}}$ .
Now, substituting the value ${h_1} = \dfrac{{25}}{{13}}$ in equation (2), we get
$
{5^2} = {\left( {\dfrac{{25}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 25 - \dfrac{{625}}{{169}} \\
\therefore {r^2} = \dfrac{{4226 - 625}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$
Now, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones.
$\therefore $ T.S.A. of the double cone = the sum of C.S.A. of both cones
$
= \left( {\pi \times r \times AB} \right) + \left( {\pi \times r \times AC} \right) \\
= \left( {\pi \times \dfrac{{60}}{{13}} \times 5} \right) + \left( {\pi \times \dfrac{{60}}{{13}} \times 12} \right) \\
= \pi \times \dfrac{{60}}{{13}}\left( {5 + 12} \right) \\
= \dfrac{{22}}{7} \times \dfrac{{60}}{{13}} \times 17 \\
= 246.59c{m^2} \\
$
Then, volume of double cone is given by the sum of volumes of both cones.
$\therefore $ Volume of double cone = sum of volumes of both cones
\[
= \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_1}} \right) + \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_2}} \right) \\
= \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{25}}{{13}}} \right) + \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \pi \times {\left( {\dfrac{{60}}{{13}}} \right)^2}\left( {\dfrac{{25}}{{13}} + \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \dfrac{{22}}{7} \times \dfrac{{3600}}{{169}} \times \dfrac{{169}}{{13}} \\
= 290c{m^3}
\]
Thus, we get the value of T.S.A. of the double cone as $246.59c{m^2}$ and the volume of double cone as \[290c{m^3}\].
Note:
Here, the second method to find the radius r can be
Now, substituting the value ${h_2} = \dfrac{{144}}{{13}}$ in equation (3), we get
$
{12^2} = {\left( {\dfrac{{144}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 144 - \dfrac{{20736}}{{169}} \\
\therefore {r^2} = \dfrac{{24336 - 20736}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$.
Firstly, find the heights of the given cones.
Then using that, find the radius of the cones.
Thus, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones and volume of double cone is given by the sum of volumes of both cones.
C.S.A. of a cone $ = \pi rl$
Volume of a cone $ = \dfrac{1}{3}\pi rh$
Complete step by step solution:
Here, a right triangle is revolved about its hypotenuse and thus the above diagram of double cone is formed.
No, in triangle ABC
Let, AB = 5 cm, AC = 12 cm and BC = 13 cm. Also, let $OB = {h_1}$ , $OC = {h_2}$ and \[OA = OD = r\] .
Thus, $OB + OC = 13$ . $\therefore {h_1} + {h_2} = 13$ . … (1)
Also, in triangle ABO, $A{B^2} = A{O^2} + O{B^2}$
$\therefore {5^2} = {h_1}^2 + {r^2}$ … (2)
And, in triangle AOC, $A{C^2} = A{O^2} + O{C^2}$
$\therefore {12^2} = {h_2}^2 + {r^2}$ … (3)
Now, subtracting equation (2) from equation (3), we get
\[
\therefore {12^2} - {5^2} = {h_2}^2 + {r^2} - {h_1}^2 - {r^2} \\
\therefore 144 - 25 = {h_2}^2 - {h_1}^2 \\
\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {{h_2} + {h_1}} \right) \\
\]
Substituting equation (1) in above equation
$\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {13} \right)$
$\therefore {h_2} - {h_1} = \dfrac{{119}}{{13}}$ … (4)
Adding equation (4) and equation (1) we get
$
{h_2} - {h_1} + {h_2} + {h_1} = \dfrac{{119}}{{13}} + 13 \\
\therefore 2{h_2} = \dfrac{{119 + 169}}{{13}} \\
\therefore 2{h_2} = \dfrac{{288}}{{13}} \\
\therefore {h_2} = \dfrac{{144}}{{13}} \\
$
Putting ${h_2} = \dfrac{{144}}{{13}}$ in equation (4) we get
$
\dfrac{{144}}{{13}} - {h_1} = \dfrac{{119}}{{13}} \\
\therefore \dfrac{{144}}{{13}} - \dfrac{{119}}{{13}} = {h_1} \\
\therefore {h_1} = \dfrac{{25}}{{13}} \\
$
Thus, we get ${h_1} = \dfrac{{25}}{{13}}$ and ${h_2} = \dfrac{{144}}{{13}}$ .
Now, substituting the value ${h_1} = \dfrac{{25}}{{13}}$ in equation (2), we get
$
{5^2} = {\left( {\dfrac{{25}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 25 - \dfrac{{625}}{{169}} \\
\therefore {r^2} = \dfrac{{4226 - 625}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$
Now, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones.
$\therefore $ T.S.A. of the double cone = the sum of C.S.A. of both cones
$
= \left( {\pi \times r \times AB} \right) + \left( {\pi \times r \times AC} \right) \\
= \left( {\pi \times \dfrac{{60}}{{13}} \times 5} \right) + \left( {\pi \times \dfrac{{60}}{{13}} \times 12} \right) \\
= \pi \times \dfrac{{60}}{{13}}\left( {5 + 12} \right) \\
= \dfrac{{22}}{7} \times \dfrac{{60}}{{13}} \times 17 \\
= 246.59c{m^2} \\
$
Then, volume of double cone is given by the sum of volumes of both cones.
$\therefore $ Volume of double cone = sum of volumes of both cones
\[
= \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_1}} \right) + \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_2}} \right) \\
= \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{25}}{{13}}} \right) + \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \pi \times {\left( {\dfrac{{60}}{{13}}} \right)^2}\left( {\dfrac{{25}}{{13}} + \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \dfrac{{22}}{7} \times \dfrac{{3600}}{{169}} \times \dfrac{{169}}{{13}} \\
= 290c{m^3}
\]
Thus, we get the value of T.S.A. of the double cone as $246.59c{m^2}$ and the volume of double cone as \[290c{m^3}\].
Note:
Here, the second method to find the radius r can be
Now, substituting the value ${h_2} = \dfrac{{144}}{{13}}$ in equation (3), we get
$
{12^2} = {\left( {\dfrac{{144}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 144 - \dfrac{{20736}}{{169}} \\
\therefore {r^2} = \dfrac{{24336 - 20736}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$.
Recently Updated Pages
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
In case of conflict between fundamental rights of citizens class 7 social science CBSE
Can anyone list 10 advantages and disadvantages of friction
What are the Components of Financial System?
Complete the letter given below written to your Principal class null english null
Express the following as a fraction and simplify a class 7 maths CBSE
Trending doubts
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Why is there a time difference of about 5 hours between class 10 social science CBSE
Who was Subhash Chandra Bose Why was he called Net class 10 english CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
Write a letter to the principal requesting him to grant class 10 english CBSE
Explain the Treaty of Vienna of 1815 class 10 social science CBSE