Answer
Verified
449.1k+ views
Hint:
Firstly, find the heights of the given cones.
Then using that, find the radius of the cones.
Thus, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones and volume of double cone is given by the sum of volumes of both cones.
C.S.A. of a cone $ = \pi rl$
Volume of a cone $ = \dfrac{1}{3}\pi rh$
Complete step by step solution:
Here, a right triangle is revolved about its hypotenuse and thus the above diagram of double cone is formed.
No, in triangle ABC
Let, AB = 5 cm, AC = 12 cm and BC = 13 cm. Also, let $OB = {h_1}$ , $OC = {h_2}$ and \[OA = OD = r\] .
Thus, $OB + OC = 13$ . $\therefore {h_1} + {h_2} = 13$ . … (1)
Also, in triangle ABO, $A{B^2} = A{O^2} + O{B^2}$
$\therefore {5^2} = {h_1}^2 + {r^2}$ … (2)
And, in triangle AOC, $A{C^2} = A{O^2} + O{C^2}$
$\therefore {12^2} = {h_2}^2 + {r^2}$ … (3)
Now, subtracting equation (2) from equation (3), we get
\[
\therefore {12^2} - {5^2} = {h_2}^2 + {r^2} - {h_1}^2 - {r^2} \\
\therefore 144 - 25 = {h_2}^2 - {h_1}^2 \\
\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {{h_2} + {h_1}} \right) \\
\]
Substituting equation (1) in above equation
$\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {13} \right)$
$\therefore {h_2} - {h_1} = \dfrac{{119}}{{13}}$ … (4)
Adding equation (4) and equation (1) we get
$
{h_2} - {h_1} + {h_2} + {h_1} = \dfrac{{119}}{{13}} + 13 \\
\therefore 2{h_2} = \dfrac{{119 + 169}}{{13}} \\
\therefore 2{h_2} = \dfrac{{288}}{{13}} \\
\therefore {h_2} = \dfrac{{144}}{{13}} \\
$
Putting ${h_2} = \dfrac{{144}}{{13}}$ in equation (4) we get
$
\dfrac{{144}}{{13}} - {h_1} = \dfrac{{119}}{{13}} \\
\therefore \dfrac{{144}}{{13}} - \dfrac{{119}}{{13}} = {h_1} \\
\therefore {h_1} = \dfrac{{25}}{{13}} \\
$
Thus, we get ${h_1} = \dfrac{{25}}{{13}}$ and ${h_2} = \dfrac{{144}}{{13}}$ .
Now, substituting the value ${h_1} = \dfrac{{25}}{{13}}$ in equation (2), we get
$
{5^2} = {\left( {\dfrac{{25}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 25 - \dfrac{{625}}{{169}} \\
\therefore {r^2} = \dfrac{{4226 - 625}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$
Now, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones.
$\therefore $ T.S.A. of the double cone = the sum of C.S.A. of both cones
$
= \left( {\pi \times r \times AB} \right) + \left( {\pi \times r \times AC} \right) \\
= \left( {\pi \times \dfrac{{60}}{{13}} \times 5} \right) + \left( {\pi \times \dfrac{{60}}{{13}} \times 12} \right) \\
= \pi \times \dfrac{{60}}{{13}}\left( {5 + 12} \right) \\
= \dfrac{{22}}{7} \times \dfrac{{60}}{{13}} \times 17 \\
= 246.59c{m^2} \\
$
Then, volume of double cone is given by the sum of volumes of both cones.
$\therefore $ Volume of double cone = sum of volumes of both cones
\[
= \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_1}} \right) + \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_2}} \right) \\
= \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{25}}{{13}}} \right) + \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \pi \times {\left( {\dfrac{{60}}{{13}}} \right)^2}\left( {\dfrac{{25}}{{13}} + \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \dfrac{{22}}{7} \times \dfrac{{3600}}{{169}} \times \dfrac{{169}}{{13}} \\
= 290c{m^3}
\]
Thus, we get the value of T.S.A. of the double cone as $246.59c{m^2}$ and the volume of double cone as \[290c{m^3}\].
Note:
Here, the second method to find the radius r can be
Now, substituting the value ${h_2} = \dfrac{{144}}{{13}}$ in equation (3), we get
$
{12^2} = {\left( {\dfrac{{144}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 144 - \dfrac{{20736}}{{169}} \\
\therefore {r^2} = \dfrac{{24336 - 20736}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$.
Firstly, find the heights of the given cones.
Then using that, find the radius of the cones.
Thus, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones and volume of double cone is given by the sum of volumes of both cones.
C.S.A. of a cone $ = \pi rl$
Volume of a cone $ = \dfrac{1}{3}\pi rh$
Complete step by step solution:
Here, a right triangle is revolved about its hypotenuse and thus the above diagram of double cone is formed.
No, in triangle ABC
Let, AB = 5 cm, AC = 12 cm and BC = 13 cm. Also, let $OB = {h_1}$ , $OC = {h_2}$ and \[OA = OD = r\] .
Thus, $OB + OC = 13$ . $\therefore {h_1} + {h_2} = 13$ . … (1)
Also, in triangle ABO, $A{B^2} = A{O^2} + O{B^2}$
$\therefore {5^2} = {h_1}^2 + {r^2}$ … (2)
And, in triangle AOC, $A{C^2} = A{O^2} + O{C^2}$
$\therefore {12^2} = {h_2}^2 + {r^2}$ … (3)
Now, subtracting equation (2) from equation (3), we get
\[
\therefore {12^2} - {5^2} = {h_2}^2 + {r^2} - {h_1}^2 - {r^2} \\
\therefore 144 - 25 = {h_2}^2 - {h_1}^2 \\
\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {{h_2} + {h_1}} \right) \\
\]
Substituting equation (1) in above equation
$\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {13} \right)$
$\therefore {h_2} - {h_1} = \dfrac{{119}}{{13}}$ … (4)
Adding equation (4) and equation (1) we get
$
{h_2} - {h_1} + {h_2} + {h_1} = \dfrac{{119}}{{13}} + 13 \\
\therefore 2{h_2} = \dfrac{{119 + 169}}{{13}} \\
\therefore 2{h_2} = \dfrac{{288}}{{13}} \\
\therefore {h_2} = \dfrac{{144}}{{13}} \\
$
Putting ${h_2} = \dfrac{{144}}{{13}}$ in equation (4) we get
$
\dfrac{{144}}{{13}} - {h_1} = \dfrac{{119}}{{13}} \\
\therefore \dfrac{{144}}{{13}} - \dfrac{{119}}{{13}} = {h_1} \\
\therefore {h_1} = \dfrac{{25}}{{13}} \\
$
Thus, we get ${h_1} = \dfrac{{25}}{{13}}$ and ${h_2} = \dfrac{{144}}{{13}}$ .
Now, substituting the value ${h_1} = \dfrac{{25}}{{13}}$ in equation (2), we get
$
{5^2} = {\left( {\dfrac{{25}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 25 - \dfrac{{625}}{{169}} \\
\therefore {r^2} = \dfrac{{4226 - 625}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$
Now, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones.
$\therefore $ T.S.A. of the double cone = the sum of C.S.A. of both cones
$
= \left( {\pi \times r \times AB} \right) + \left( {\pi \times r \times AC} \right) \\
= \left( {\pi \times \dfrac{{60}}{{13}} \times 5} \right) + \left( {\pi \times \dfrac{{60}}{{13}} \times 12} \right) \\
= \pi \times \dfrac{{60}}{{13}}\left( {5 + 12} \right) \\
= \dfrac{{22}}{7} \times \dfrac{{60}}{{13}} \times 17 \\
= 246.59c{m^2} \\
$
Then, volume of double cone is given by the sum of volumes of both cones.
$\therefore $ Volume of double cone = sum of volumes of both cones
\[
= \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_1}} \right) + \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_2}} \right) \\
= \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{25}}{{13}}} \right) + \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \pi \times {\left( {\dfrac{{60}}{{13}}} \right)^2}\left( {\dfrac{{25}}{{13}} + \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \dfrac{{22}}{7} \times \dfrac{{3600}}{{169}} \times \dfrac{{169}}{{13}} \\
= 290c{m^3}
\]
Thus, we get the value of T.S.A. of the double cone as $246.59c{m^2}$ and the volume of double cone as \[290c{m^3}\].
Note:
Here, the second method to find the radius r can be
Now, substituting the value ${h_2} = \dfrac{{144}}{{13}}$ in equation (3), we get
$
{12^2} = {\left( {\dfrac{{144}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 144 - \dfrac{{20736}}{{169}} \\
\therefore {r^2} = \dfrac{{24336 - 20736}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
What is BLO What is the full form of BLO class 8 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE