Answer
Verified
458.7k+ views
Hint:
Firstly, find the heights of the given cones.
Then using that, find the radius of the cones.
Thus, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones and volume of double cone is given by the sum of volumes of both cones.
C.S.A. of a cone $ = \pi rl$
Volume of a cone $ = \dfrac{1}{3}\pi rh$
Complete step by step solution:
Here, a right triangle is revolved about its hypotenuse and thus the above diagram of double cone is formed.
No, in triangle ABC
Let, AB = 5 cm, AC = 12 cm and BC = 13 cm. Also, let $OB = {h_1}$ , $OC = {h_2}$ and \[OA = OD = r\] .
Thus, $OB + OC = 13$ . $\therefore {h_1} + {h_2} = 13$ . … (1)
Also, in triangle ABO, $A{B^2} = A{O^2} + O{B^2}$
$\therefore {5^2} = {h_1}^2 + {r^2}$ … (2)
And, in triangle AOC, $A{C^2} = A{O^2} + O{C^2}$
$\therefore {12^2} = {h_2}^2 + {r^2}$ … (3)
Now, subtracting equation (2) from equation (3), we get
\[
\therefore {12^2} - {5^2} = {h_2}^2 + {r^2} - {h_1}^2 - {r^2} \\
\therefore 144 - 25 = {h_2}^2 - {h_1}^2 \\
\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {{h_2} + {h_1}} \right) \\
\]
Substituting equation (1) in above equation
$\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {13} \right)$
$\therefore {h_2} - {h_1} = \dfrac{{119}}{{13}}$ … (4)
Adding equation (4) and equation (1) we get
$
{h_2} - {h_1} + {h_2} + {h_1} = \dfrac{{119}}{{13}} + 13 \\
\therefore 2{h_2} = \dfrac{{119 + 169}}{{13}} \\
\therefore 2{h_2} = \dfrac{{288}}{{13}} \\
\therefore {h_2} = \dfrac{{144}}{{13}} \\
$
Putting ${h_2} = \dfrac{{144}}{{13}}$ in equation (4) we get
$
\dfrac{{144}}{{13}} - {h_1} = \dfrac{{119}}{{13}} \\
\therefore \dfrac{{144}}{{13}} - \dfrac{{119}}{{13}} = {h_1} \\
\therefore {h_1} = \dfrac{{25}}{{13}} \\
$
Thus, we get ${h_1} = \dfrac{{25}}{{13}}$ and ${h_2} = \dfrac{{144}}{{13}}$ .
Now, substituting the value ${h_1} = \dfrac{{25}}{{13}}$ in equation (2), we get
$
{5^2} = {\left( {\dfrac{{25}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 25 - \dfrac{{625}}{{169}} \\
\therefore {r^2} = \dfrac{{4226 - 625}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$
Now, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones.
$\therefore $ T.S.A. of the double cone = the sum of C.S.A. of both cones
$
= \left( {\pi \times r \times AB} \right) + \left( {\pi \times r \times AC} \right) \\
= \left( {\pi \times \dfrac{{60}}{{13}} \times 5} \right) + \left( {\pi \times \dfrac{{60}}{{13}} \times 12} \right) \\
= \pi \times \dfrac{{60}}{{13}}\left( {5 + 12} \right) \\
= \dfrac{{22}}{7} \times \dfrac{{60}}{{13}} \times 17 \\
= 246.59c{m^2} \\
$
Then, volume of double cone is given by the sum of volumes of both cones.
$\therefore $ Volume of double cone = sum of volumes of both cones
\[
= \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_1}} \right) + \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_2}} \right) \\
= \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{25}}{{13}}} \right) + \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \pi \times {\left( {\dfrac{{60}}{{13}}} \right)^2}\left( {\dfrac{{25}}{{13}} + \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \dfrac{{22}}{7} \times \dfrac{{3600}}{{169}} \times \dfrac{{169}}{{13}} \\
= 290c{m^3}
\]
Thus, we get the value of T.S.A. of the double cone as $246.59c{m^2}$ and the volume of double cone as \[290c{m^3}\].
Note:
Here, the second method to find the radius r can be
Now, substituting the value ${h_2} = \dfrac{{144}}{{13}}$ in equation (3), we get
$
{12^2} = {\left( {\dfrac{{144}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 144 - \dfrac{{20736}}{{169}} \\
\therefore {r^2} = \dfrac{{24336 - 20736}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$.
Firstly, find the heights of the given cones.
Then using that, find the radius of the cones.
Thus, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones and volume of double cone is given by the sum of volumes of both cones.
C.S.A. of a cone $ = \pi rl$
Volume of a cone $ = \dfrac{1}{3}\pi rh$
Complete step by step solution:
Here, a right triangle is revolved about its hypotenuse and thus the above diagram of double cone is formed.
No, in triangle ABC
Let, AB = 5 cm, AC = 12 cm and BC = 13 cm. Also, let $OB = {h_1}$ , $OC = {h_2}$ and \[OA = OD = r\] .
Thus, $OB + OC = 13$ . $\therefore {h_1} + {h_2} = 13$ . … (1)
Also, in triangle ABO, $A{B^2} = A{O^2} + O{B^2}$
$\therefore {5^2} = {h_1}^2 + {r^2}$ … (2)
And, in triangle AOC, $A{C^2} = A{O^2} + O{C^2}$
$\therefore {12^2} = {h_2}^2 + {r^2}$ … (3)
Now, subtracting equation (2) from equation (3), we get
\[
\therefore {12^2} - {5^2} = {h_2}^2 + {r^2} - {h_1}^2 - {r^2} \\
\therefore 144 - 25 = {h_2}^2 - {h_1}^2 \\
\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {{h_2} + {h_1}} \right) \\
\]
Substituting equation (1) in above equation
$\therefore 119 = \left( {{h_2} - {h_1}} \right)\left( {13} \right)$
$\therefore {h_2} - {h_1} = \dfrac{{119}}{{13}}$ … (4)
Adding equation (4) and equation (1) we get
$
{h_2} - {h_1} + {h_2} + {h_1} = \dfrac{{119}}{{13}} + 13 \\
\therefore 2{h_2} = \dfrac{{119 + 169}}{{13}} \\
\therefore 2{h_2} = \dfrac{{288}}{{13}} \\
\therefore {h_2} = \dfrac{{144}}{{13}} \\
$
Putting ${h_2} = \dfrac{{144}}{{13}}$ in equation (4) we get
$
\dfrac{{144}}{{13}} - {h_1} = \dfrac{{119}}{{13}} \\
\therefore \dfrac{{144}}{{13}} - \dfrac{{119}}{{13}} = {h_1} \\
\therefore {h_1} = \dfrac{{25}}{{13}} \\
$
Thus, we get ${h_1} = \dfrac{{25}}{{13}}$ and ${h_2} = \dfrac{{144}}{{13}}$ .
Now, substituting the value ${h_1} = \dfrac{{25}}{{13}}$ in equation (2), we get
$
{5^2} = {\left( {\dfrac{{25}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 25 - \dfrac{{625}}{{169}} \\
\therefore {r^2} = \dfrac{{4226 - 625}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$
Now, T.S.A. of the double cone can be given by the sum of C.S.A. of both cones.
$\therefore $ T.S.A. of the double cone = the sum of C.S.A. of both cones
$
= \left( {\pi \times r \times AB} \right) + \left( {\pi \times r \times AC} \right) \\
= \left( {\pi \times \dfrac{{60}}{{13}} \times 5} \right) + \left( {\pi \times \dfrac{{60}}{{13}} \times 12} \right) \\
= \pi \times \dfrac{{60}}{{13}}\left( {5 + 12} \right) \\
= \dfrac{{22}}{7} \times \dfrac{{60}}{{13}} \times 17 \\
= 246.59c{m^2} \\
$
Then, volume of double cone is given by the sum of volumes of both cones.
$\therefore $ Volume of double cone = sum of volumes of both cones
\[
= \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_1}} \right) + \left( {\dfrac{1}{3} \times \pi \times {r^2} \times {h_2}} \right) \\
= \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{25}}{{13}}} \right) + \left( {\dfrac{1}{3} \times \pi \times {{\left( {\dfrac{{60}}{{13}}} \right)}^2} \times \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \pi \times {\left( {\dfrac{{60}}{{13}}} \right)^2}\left( {\dfrac{{25}}{{13}} + \dfrac{{144}}{{13}}} \right) \\
= \dfrac{1}{3} \times \dfrac{{22}}{7} \times \dfrac{{3600}}{{169}} \times \dfrac{{169}}{{13}} \\
= 290c{m^3}
\]
Thus, we get the value of T.S.A. of the double cone as $246.59c{m^2}$ and the volume of double cone as \[290c{m^3}\].
Note:
Here, the second method to find the radius r can be
Now, substituting the value ${h_2} = \dfrac{{144}}{{13}}$ in equation (3), we get
$
{12^2} = {\left( {\dfrac{{144}}{{13}}} \right)^2} + {r^2} \\
\therefore {r^2} = 144 - \dfrac{{20736}}{{169}} \\
\therefore {r^2} = \dfrac{{24336 - 20736}}{{169}} \\
\therefore {r^2} = \dfrac{{3600}}{{169}} \\
\therefore r = \sqrt {\dfrac{{3600}}{{169}}} \\
\therefore r = \dfrac{{60}}{{13}} \\
$
Thus, $r = \dfrac{{69}}{{13}}$.
Recently Updated Pages
Fill in the blanks with a suitable option She showed class 10 english CBSE
TISCO is located on the banks of which river A Tungabhadra class 10 social science CBSE
What is greed for clothes A Simply desire to have them class 10 social science CBSE
What does the 17th Parallel line separate A South and class 10 social science CBSE
The original home of the gypsies was A Egypt B Russia class 10 social science CBSE
The angle between the true north south line and the class 10 social science CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE