Answer
Verified
445.5k+ views
Hint: Since the children and old people have mentioned their preferences of seats, we will give priority to old men and children. Firstly, we will select $ 3 $ seats among $ 5 $ seats upstairs for children and then we will select $ 2 $ seats among $ 5 $ seats for old people downstairs. Finally, we will find out the total number of ways for the seating arrangement of $ 10 $ people in the bus.
Complete step-by-step answer:
Given: There are total $ 10 $ people,( $ 2 $ old people, $ 3 $ children), who aboard a double decker bus
Step $ 1 $ : There are $ 5 $ seats upstairs and $ 5 $ seat downstairs.
Selection of $ 3 $ seats in upstairs for children and the arrange children there
$ { = ^5}{C_3} \times 3! $
Step $ 2 $ : There are $ 5 $ seats downstairs.
Selection of $ 2 $ seats in downstairs for old people and arrange them there
$ { = ^5}{C_2} \times 2! $
Step $ 3 $ : Total number of ways for the seating arrangement of $ 10 $ people are
$
{ = ^5}{C_3} \times 3!\;{ \times ^5}{C_2} \times 2! \times 5! \\
= 144000 \\
$
So, the correct answer is “Option A”.
Note: In these types of questions we always give the priority to those who are either always included or excluded. Also, not to be confused between permutation and combination. The various ways in which objects from a set may be selected, generally without replacement, to form subsets, This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.
Complete step-by-step answer:
Given: There are total $ 10 $ people,( $ 2 $ old people, $ 3 $ children), who aboard a double decker bus
Step $ 1 $ : There are $ 5 $ seats upstairs and $ 5 $ seat downstairs.
Selection of $ 3 $ seats in upstairs for children and the arrange children there
$ { = ^5}{C_3} \times 3! $
Step $ 2 $ : There are $ 5 $ seats downstairs.
Selection of $ 2 $ seats in downstairs for old people and arrange them there
$ { = ^5}{C_2} \times 2! $
Step $ 3 $ : Total number of ways for the seating arrangement of $ 10 $ people are
$
{ = ^5}{C_3} \times 3!\;{ \times ^5}{C_2} \times 2! \times 5! \\
= 144000 \\
$
So, the correct answer is “Option A”.
Note: In these types of questions we always give the priority to those who are either always included or excluded. Also, not to be confused between permutation and combination. The various ways in which objects from a set may be selected, generally without replacement, to form subsets, This selection of subsets is called a permutation when the order of selection is a factor, a combination when order is not a factor.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which of the following was the capital of the Surasena class 6 social science CBSE
How do you graph the function fx 4x class 9 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Give 10 examples for herbs , shrubs , climbers , creepers
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Who was the first Director General of the Archaeological class 10 social science CBSE