Answer
Verified
470.4k+ views
Hint:Remember you don’t have to arrange the passengers who are already sitting or have a preference. Arrange the remaining passengers using combinations in the remaining seats in the lower or upper deck.
Complete step-by-step answer:
Let’s first try to analyse the question properly. In the given problem, there are total $20$ passengers that are to be arranged in $20$ seats of a double-decker that has $7$ seats in the lower deck and $13$ in the upper deck. But we also have a condition that, $5$ passenger should be arranged only in the lower deck and $8$ passengers should be arranged only in the upper deck.
So basically, $5$ passengers in $7$ seats of the lower deck are already arranged then $8$ passengers in $13$ seats of the upper deck are already arranged. And then remaining $7$ passengers in $7$ remaining seats.
Now we can start arranging passengers using combinations step by step. But for that, you need to know the idea of combination. A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter.
$ \Rightarrow $ If $'n'$ is the number of things to choose from, and we choose $'r'$ of them, no repetition, the order doesn't matter; then we can represent then as: ${}^n{C_r} = \left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Out of $7$ remaining passengers, we have to arrange them in remaining $2$ seats in the lower deck and in $5$ seats in the upper deck.
$ \Rightarrow $ We can arrange remaining passengers in the upper deck then after those remaining two passengers will be arranged in remaining two seats by itself $ \Rightarrow {}^7{C_5} = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}}$
Therefore, the number of required ways$ = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7}}{{1 \times 2 \times 3 \times 4 \times 5 \times 1 \times 2}} = \dfrac{{6 \times 7}}{{1 \times 2}} = 21$
Hence, the number of ways to arrange the passengers as required is $21$.
Note:Try to visualize the given condition properly before starting a solution. An alternative approach can be taken by arranging the remaining passengers in the lower deck first, i.e. by using${}^7{C_2}$. But you will find the same answer since ${}^n{C_r} = {}^n{C_{n - r}}$
Complete step-by-step answer:
Let’s first try to analyse the question properly. In the given problem, there are total $20$ passengers that are to be arranged in $20$ seats of a double-decker that has $7$ seats in the lower deck and $13$ in the upper deck. But we also have a condition that, $5$ passenger should be arranged only in the lower deck and $8$ passengers should be arranged only in the upper deck.
So basically, $5$ passengers in $7$ seats of the lower deck are already arranged then $8$ passengers in $13$ seats of the upper deck are already arranged. And then remaining $7$ passengers in $7$ remaining seats.
Now we can start arranging passengers using combinations step by step. But for that, you need to know the idea of combination. A combination is a mathematical technique that determines the number of possible arrangements in a collection of items where the order of the selection does not matter.
$ \Rightarrow $ If $'n'$ is the number of things to choose from, and we choose $'r'$ of them, no repetition, the order doesn't matter; then we can represent then as: ${}^n{C_r} = \left( {\begin{array}{*{20}{c}}
n \\
r
\end{array}} \right) = \dfrac{{n!}}{{r!\left( {n - r} \right)!}}$
Out of $7$ remaining passengers, we have to arrange them in remaining $2$ seats in the lower deck and in $5$ seats in the upper deck.
$ \Rightarrow $ We can arrange remaining passengers in the upper deck then after those remaining two passengers will be arranged in remaining two seats by itself $ \Rightarrow {}^7{C_5} = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}}$
Therefore, the number of required ways$ = \dfrac{{7!}}{{5!\left( {7 - 5} \right)!}} = \dfrac{{1 \times 2 \times 3 \times 4 \times 5 \times 6 \times 7}}{{1 \times 2 \times 3 \times 4 \times 5 \times 1 \times 2}} = \dfrac{{6 \times 7}}{{1 \times 2}} = 21$
Hence, the number of ways to arrange the passengers as required is $21$.
Note:Try to visualize the given condition properly before starting a solution. An alternative approach can be taken by arranging the remaining passengers in the lower deck first, i.e. by using${}^7{C_2}$. But you will find the same answer since ${}^n{C_r} = {}^n{C_{n - r}}$
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE