Answer
Verified
449.7k+ views
Hint: As some of the quantities of the motion are given, and time has to be calculated, we can use Newton's equations of motion to find the required value. The reaction time will be based upon the distance left to be covered when the body comes to rest after a specific period of time.
Formula used:
1) \[v = u + at\] where, v and u are final and initial velocities respectively, a is acceleration and t is time taken.
2) $s = ut + \dfrac{1}{2}a{t^2}$ where s is the distance covered.
Complete step by step answer:
It is given that the driver was moving initially at a constant speed of 20m/s, then applies the brake to finally stop the vehicle (vehicle comes at rest). Retardation (negative acceleration) produced is of magnitude \[2.5m/{s^2}\].
From Newton’s first equation of motion:
\[v = u + at\] here,
Initial velocity (u) = 20 (given)
Final velocity (v) = 0 (come to rest)
Acceleration (a) = - 2.5 (negative because it is retarded)
Time (t) = t (say)
\[
0 = 20 - 2.5t \\
\Rightarrow 2.5t = 20 \\
\Rightarrow t = \dfrac{{20}}{{2.5}} \\
\Rightarrow t = \dfrac{{20 \times 10}}{{25}} \\
\Rightarrow t = 8s \\
\]
Thus the truck took 8 seconds to come to rest.
Now, calculating the distance driver can cover within 8 seconds using Newton’s second equation of motion:
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting the known values to find the distance s:
$
s = \left( {20 \times 8} \right) + \dfrac{1}{2} \times \left( { - 2.5} \right) \times {\left( 8 \right)^2} \\
\Rightarrow s = \left( {20 \times 8} \right) - \dfrac{1}{2} \times 2.5 \times 64 \\
\Rightarrow s = 160 - 80 \\
\Rightarrow s = 80m \\
$
The truck can cover 80 metres in 8 seconds, but the required distance to be covered is 95 metres (given). So the extra distance is:
$95 - 80 = 15m$
Thus, the driver’s reaction time will be based on this distance and his initial speed 20 m/s:
\[
S = \dfrac{D}{T} \\
\Rightarrow T = \dfrac{D}{S} \\
\Rightarrow T = \dfrac{{15}}{{20}} \\
\therefore T = 0.75s \\
\]
Therefore, the reaction time of the truck driver is 0.75 seconds and the correct option is B.
Note:We decide which equation of motion is to be used by observing the quantities that are given and which needs to be calculated and choose the equation which satisfies the needs. We used the remaining distance to calculate reaction time because it is given that the accident was just avoided but the distance the truck was covering before coming to rest was lesser compared to the given distance. So, the distance of his reaction time would be the difference between the two.
Formula used:
1) \[v = u + at\] where, v and u are final and initial velocities respectively, a is acceleration and t is time taken.
2) $s = ut + \dfrac{1}{2}a{t^2}$ where s is the distance covered.
Complete step by step answer:
It is given that the driver was moving initially at a constant speed of 20m/s, then applies the brake to finally stop the vehicle (vehicle comes at rest). Retardation (negative acceleration) produced is of magnitude \[2.5m/{s^2}\].
From Newton’s first equation of motion:
\[v = u + at\] here,
Initial velocity (u) = 20 (given)
Final velocity (v) = 0 (come to rest)
Acceleration (a) = - 2.5 (negative because it is retarded)
Time (t) = t (say)
\[
0 = 20 - 2.5t \\
\Rightarrow 2.5t = 20 \\
\Rightarrow t = \dfrac{{20}}{{2.5}} \\
\Rightarrow t = \dfrac{{20 \times 10}}{{25}} \\
\Rightarrow t = 8s \\
\]
Thus the truck took 8 seconds to come to rest.
Now, calculating the distance driver can cover within 8 seconds using Newton’s second equation of motion:
$s = ut + \dfrac{1}{2}a{t^2}$
Substituting the known values to find the distance s:
$
s = \left( {20 \times 8} \right) + \dfrac{1}{2} \times \left( { - 2.5} \right) \times {\left( 8 \right)^2} \\
\Rightarrow s = \left( {20 \times 8} \right) - \dfrac{1}{2} \times 2.5 \times 64 \\
\Rightarrow s = 160 - 80 \\
\Rightarrow s = 80m \\
$
The truck can cover 80 metres in 8 seconds, but the required distance to be covered is 95 metres (given). So the extra distance is:
$95 - 80 = 15m$
Thus, the driver’s reaction time will be based on this distance and his initial speed 20 m/s:
\[
S = \dfrac{D}{T} \\
\Rightarrow T = \dfrac{D}{S} \\
\Rightarrow T = \dfrac{{15}}{{20}} \\
\therefore T = 0.75s \\
\]
Therefore, the reaction time of the truck driver is 0.75 seconds and the correct option is B.
Note:We decide which equation of motion is to be used by observing the quantities that are given and which needs to be calculated and choose the equation which satisfies the needs. We used the remaining distance to calculate reaction time because it is given that the accident was just avoided but the distance the truck was covering before coming to rest was lesser compared to the given distance. So, the distance of his reaction time would be the difference between the two.
Recently Updated Pages
10 Examples of Evaporation in Daily Life with Explanations
10 Examples of Diffusion in Everyday Life
1 g of dry green algae absorb 47 times 10 3 moles of class 11 chemistry CBSE
What is the meaning of celestial class 10 social science CBSE
What causes groundwater depletion How can it be re class 10 chemistry CBSE
Under which different types can the following changes class 10 physics CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
Which are the Top 10 Largest Countries of the World?
How do you graph the function fx 4x class 9 maths CBSE
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Change the following sentences into negative and interrogative class 10 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
In the tincture of iodine which is solute and solv class 11 chemistry CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE