Answer
Verified
470.4k+ views
Hint: To solve this question, we need to use the basic theory related to the probability. As we know, to calculate the probability of an event, we take the number of successes, divided by the number of possible outcomes.
The probability of event A happening is:
P(A) = $ $ $ \dfrac{{{\text{n}}\left( {\text{A}} \right)}}{{{\text{n}}\left( {\text{S}} \right)}} $
Complete step-by-step answer:
As given, A fair die is rolled and Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls.
Now,
Probability that ball is drawn from bag A = $ {\text{P}}\left( {{{\text{E}}_{\text{1}}}} \right) $ = $ \dfrac{1}{6} $
Probability that ball is drawn from bag B = $ {\text{P}}\left( {{{\text{E}}_2}} \right) $ = $ \dfrac{2}{6} $
Probability that ball is drawn from bag C = $ {\text{P}}\left( {{{\text{E}}_3}} \right) $ = $ \dfrac{3}{6} $
let P(A) be the probability of drawing a red ball
Probability that it is drawn from bag A = $ {\text{P}}\left( {{\text{A|}}{{\text{E}}_{\text{1}}}} \right) $ = $ \dfrac{3}{5} $
Probability that it is drawn from bag B = $ {\text{P}}\left( {{\text{A|}}{{\text{E}}_2}} \right) $ = $ \dfrac{3}{7} $
Probability that it is drawn from bag C = $ {\text{P}}\left( {{\text{A|}}{{\text{E}}_3}} \right) $ = $ \dfrac{4}{9} $
Now we have to find $ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ that is it is drawn from bag B
Using Baye's theorem
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{{\text{P}}\left( {{{\text{E}}_{\text{2}}}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_{\text{2}}}} \right)}}{{{\text{P}}\left( {{{\text{E}}_1}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_1}} \right) + {\text{P}}\left( {{{\text{E}}_{\text{2}}}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_{\text{2}}}} \right) + {\text{P}}\left( {{{\text{E}}_3}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_3}} \right)}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{\dfrac{1}{3} \times \dfrac{3}{7}}}{{\dfrac{1}{6} \times \dfrac{3}{5} + \dfrac{1}{3} \times \dfrac{3}{7} + \dfrac{1}{2} \times \dfrac{4}{9}}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{\dfrac{1}{7}}}{{\dfrac{1}{{10}} + \dfrac{1}{7} + \dfrac{2}{9}}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{\dfrac{1}{7}}}{{\dfrac{{293}}{{630}}}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{90}}{{293}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = 0.307
Therefore, the probability that it is drawn from Bag B is $ \dfrac{{90}}{{293}} $ or 0.307.
Note: Probability is a number between 0 and 1. We multiply our final answer by 100 to get a “percent”. We borrowed that concept from the French - “per cent” - which means per 100. Something with 0 or 0% probability will never happen. Something with 1 or 100% percent probability will always happen. Something with 0.5 or 50% probability will happen half the time.
If your final answer is smaller than 0 or bigger than 1, then you made a mistake. Everything happens between 0 and 1.
The probability of event A happening is:
P(A) = $ $ $ \dfrac{{{\text{n}}\left( {\text{A}} \right)}}{{{\text{n}}\left( {\text{S}} \right)}} $
Complete step-by-step answer:
As given, A fair die is rolled and Bag A contains 3 red and 2 white balls, Bag B contains 3 red and 4 white balls and Bag C contains 4 red and 5 white balls.
Now,
Probability that ball is drawn from bag A = $ {\text{P}}\left( {{{\text{E}}_{\text{1}}}} \right) $ = $ \dfrac{1}{6} $
Probability that ball is drawn from bag B = $ {\text{P}}\left( {{{\text{E}}_2}} \right) $ = $ \dfrac{2}{6} $
Probability that ball is drawn from bag C = $ {\text{P}}\left( {{{\text{E}}_3}} \right) $ = $ \dfrac{3}{6} $
let P(A) be the probability of drawing a red ball
Probability that it is drawn from bag A = $ {\text{P}}\left( {{\text{A|}}{{\text{E}}_{\text{1}}}} \right) $ = $ \dfrac{3}{5} $
Probability that it is drawn from bag B = $ {\text{P}}\left( {{\text{A|}}{{\text{E}}_2}} \right) $ = $ \dfrac{3}{7} $
Probability that it is drawn from bag C = $ {\text{P}}\left( {{\text{A|}}{{\text{E}}_3}} \right) $ = $ \dfrac{4}{9} $
Now we have to find $ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ that is it is drawn from bag B
Using Baye's theorem
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{{\text{P}}\left( {{{\text{E}}_{\text{2}}}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_{\text{2}}}} \right)}}{{{\text{P}}\left( {{{\text{E}}_1}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_1}} \right) + {\text{P}}\left( {{{\text{E}}_{\text{2}}}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_{\text{2}}}} \right) + {\text{P}}\left( {{{\text{E}}_3}} \right){\text{P}}\left( {{\text{A|}}{{\text{E}}_3}} \right)}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{\dfrac{1}{3} \times \dfrac{3}{7}}}{{\dfrac{1}{6} \times \dfrac{3}{5} + \dfrac{1}{3} \times \dfrac{3}{7} + \dfrac{1}{2} \times \dfrac{4}{9}}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{\dfrac{1}{7}}}{{\dfrac{1}{{10}} + \dfrac{1}{7} + \dfrac{2}{9}}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{\dfrac{1}{7}}}{{\dfrac{{293}}{{630}}}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = $ \dfrac{{90}}{{293}} $
$ {\text{P}}\left( {{{\text{E}}_{\text{2}}}{\text{|A}}} \right) $ = 0.307
Therefore, the probability that it is drawn from Bag B is $ \dfrac{{90}}{{293}} $ or 0.307.
Note: Probability is a number between 0 and 1. We multiply our final answer by 100 to get a “percent”. We borrowed that concept from the French - “per cent” - which means per 100. Something with 0 or 0% probability will never happen. Something with 1 or 100% percent probability will always happen. Something with 0.5 or 50% probability will happen half the time.
If your final answer is smaller than 0 or bigger than 1, then you made a mistake. Everything happens between 0 and 1.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE