Answer
Verified
432k+ views
Hint: In this question we need to determine the time in which the tank will be filled. Here, we will determine the volume of pipe and the volume of the tank by using the volume of the cylinder formula, as both are in the shape of a cylinder. Then equate the volume of the pipe and volume of the tank to determine the height of the pipe. Then we will determine the time in which the tank will be filled when the rate of flow of water through the pipe is $ 4\,\dfrac{{km}}{h} $ .
Complete step-by-step answer:
First, let us determine the volume of pipe and the volume of the tank separately.
Now, let us determine the volume of pipe,
Pipe is in the form of a cylinder.
Therefore, we know that the volume of cylinder $ = \pi {r^2}h $
Here, it is given that the diameter of the pipe is $ 20\,cm $ .
Now, we know that, radius $ = \dfrac{{diameter}}{2} $
Therefore, $ r $ $ = \dfrac{{20}}{2} $
$ = 10\,cm $
By converting $ cm $ into $ m $ , we have,
$ = 10 \times \dfrac{1}{{100}}m $
$ = \dfrac{1}{{10}}\,m $
Let the length of the pipe for filling the whole tank be $ h\,m $ .
Now, substituting the values in the volume of cylinder, we have,
$ = \pi {\left( {\dfrac{1}{{10}}} \right)^2}h $
$ = \pi \times \dfrac{1}{{100}} \times h $
$ = \dfrac{{\pi h}}{{100}} $
Now, let us determine the volume of tank
Here, the tank is also in the form of a cylinder.
Therefore, we know that the volume of cylinder $ = \pi {r^2}h $
It is given that the cylindrical tank is $ 10\,m $ in diameter.
Now, we know that, radius $ = \dfrac{{diameter}}{2} $
\[r\] $ = \dfrac{{10}}{2}\,m $
$ = \,5m $
It is also given that the cylindrical tank is $ 2\,m $ deep.
Therefore, $ h $ $ = 2\,m $
Substituting the values in the volume of a cylinder, we have,
$ = \pi \times {\left( 5 \right)^2} \times 2 $
$ = \pi \times 25 \times 2 $
$ = 50\pi $
Now, volume of pipe=volume of tank
Therefore, $ \dfrac{{\pi h}}{{100}} = 50\pi $
$ h = \dfrac{{50\pi \times 100}}{\pi } $
$ h = 5000\,m $
$ h = 5\,km $
It is given that water flows through the pipe at the rate of $ 4\,\dfrac{{km}}{h} $ .
We need to determine the time in which the tank will be filled.
Water flows in the pipe at the rate of $ 4km $ in $ 1\,hr $ .
So, water flows in the pipe at the rate of $ 1\,km $ $ = \dfrac{1}{4}\,hr $
Therefore, water flows in the pipe at the rate of $ 5\,km $ $ = \dfrac{5}{4}\,hr $
We know that $ 1hr = 60\min $ , therefore,
$ = \dfrac{5}{4} \times 60\,\min $
$ = 5 \times 15\,\min $
$ = 75\,\min $
Hence in $ 75 $ minutes i.e., $ 1 $ hour $ 15 $ minutes, the tank will be filled.
So, the correct answer is “ $ 1 $ hour $ 15 $ minutes”.
Note: In this question, it is important to note here that we can also solve this question by determining the volume of water that flows in $ t $ hours from the pipe as \[area\,of\,cross\,section \times speed \times time\] and equating this with the volume of the tank, we can get the required time. While solving these types of questions, be clear with the formulas of the surface areas and the volumes.
Complete step-by-step answer:
First, let us determine the volume of pipe and the volume of the tank separately.
Now, let us determine the volume of pipe,
Pipe is in the form of a cylinder.
Therefore, we know that the volume of cylinder $ = \pi {r^2}h $
Here, it is given that the diameter of the pipe is $ 20\,cm $ .
Now, we know that, radius $ = \dfrac{{diameter}}{2} $
Therefore, $ r $ $ = \dfrac{{20}}{2} $
$ = 10\,cm $
By converting $ cm $ into $ m $ , we have,
$ = 10 \times \dfrac{1}{{100}}m $
$ = \dfrac{1}{{10}}\,m $
Let the length of the pipe for filling the whole tank be $ h\,m $ .
Now, substituting the values in the volume of cylinder, we have,
$ = \pi {\left( {\dfrac{1}{{10}}} \right)^2}h $
$ = \pi \times \dfrac{1}{{100}} \times h $
$ = \dfrac{{\pi h}}{{100}} $
Now, let us determine the volume of tank
Here, the tank is also in the form of a cylinder.
Therefore, we know that the volume of cylinder $ = \pi {r^2}h $
It is given that the cylindrical tank is $ 10\,m $ in diameter.
Now, we know that, radius $ = \dfrac{{diameter}}{2} $
\[r\] $ = \dfrac{{10}}{2}\,m $
$ = \,5m $
It is also given that the cylindrical tank is $ 2\,m $ deep.
Therefore, $ h $ $ = 2\,m $
Substituting the values in the volume of a cylinder, we have,
$ = \pi \times {\left( 5 \right)^2} \times 2 $
$ = \pi \times 25 \times 2 $
$ = 50\pi $
Now, volume of pipe=volume of tank
Therefore, $ \dfrac{{\pi h}}{{100}} = 50\pi $
$ h = \dfrac{{50\pi \times 100}}{\pi } $
$ h = 5000\,m $
$ h = 5\,km $
It is given that water flows through the pipe at the rate of $ 4\,\dfrac{{km}}{h} $ .
We need to determine the time in which the tank will be filled.
Water flows in the pipe at the rate of $ 4km $ in $ 1\,hr $ .
So, water flows in the pipe at the rate of $ 1\,km $ $ = \dfrac{1}{4}\,hr $
Therefore, water flows in the pipe at the rate of $ 5\,km $ $ = \dfrac{5}{4}\,hr $
We know that $ 1hr = 60\min $ , therefore,
$ = \dfrac{5}{4} \times 60\,\min $
$ = 5 \times 15\,\min $
$ = 75\,\min $
Hence in $ 75 $ minutes i.e., $ 1 $ hour $ 15 $ minutes, the tank will be filled.
So, the correct answer is “ $ 1 $ hour $ 15 $ minutes”.
Note: In this question, it is important to note here that we can also solve this question by determining the volume of water that flows in $ t $ hours from the pipe as \[area\,of\,cross\,section \times speed \times time\] and equating this with the volume of the tank, we can get the required time. While solving these types of questions, be clear with the formulas of the surface areas and the volumes.
Recently Updated Pages
Who among the following was the religious guru of class 7 social science CBSE
what is the correct chronological order of the following class 10 social science CBSE
Which of the following was not the actual cause for class 10 social science CBSE
Which of the following statements is not correct A class 10 social science CBSE
Which of the following leaders was not present in the class 10 social science CBSE
Garampani Sanctuary is located at A Diphu Assam B Gangtok class 10 social science CBSE
Trending doubts
A rainbow has circular shape because A The earth is class 11 physics CBSE
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Who gave the slogan Jai Hind ALal Bahadur Shastri BJawaharlal class 11 social science CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
Why is there a time difference of about 5 hours between class 10 social science CBSE