Answer
Verified
400.7k+ views
Hint – In order to solve the given question we draw an appropriate figure using the given data. Then observing the figure, we use the definitions of trigonometric functions to find out the unknown value.
Complete step-by-step answer:
Given data, height of the tower = 5m
Angle of elevation on the top of flagstaff = 60°
Angle of elevation on the top of tower = 45°
Let BC be the height of the tower.
Let DC be the height of the flag staff.
Let the point on the ground be A.
In right △ABC,
The right angle is at B.
We know that cotθ =$\dfrac{{{\text{adjacent side}}}}{{{\text{opposite side}}}}$.
From the figure,
AB = BC cot 45°
Given height of the tower is 5m, i.e. BC =5m
AB = 5 x 1 (cot45° = 1)
AB = 5m - (1)
In the right angled triangle △ABD,
The right angle is at B.
We know that cotθ =$\dfrac{{{\text{adjacent side}}}}{{{\text{opposite side}}}}$.
From the figure,
AB = BD cot 60°
AB = (BC+CD) cot 60° (cot 60° = $\dfrac{1}{{\sqrt 3 }}$)
AB = (5+CD) $\dfrac{1}{{\sqrt 3 }}$ ........ (ii)
Equating (i) and (ii), we get
(5 + CD) $\dfrac{1}{{\sqrt 3 }}$ = 5
(5 + CD) = 5$\sqrt 3 $
CD = 5$\sqrt 3 $-5 = 5(1.732-1) = 5 × 0.732 = 3.66 m ($\sqrt 3 $=1.732)
Therefore the height of the flag - staff is 3.66 m.
Note: In order to solve this kind of question, the key is to carefully translate the given sentences into a diagram. The use of trigonometric equations is an important step.
A right angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The relation between the sides and angles of a right triangle is the basis for trigonometry.
Complete step-by-step answer:
Given data, height of the tower = 5m
Angle of elevation on the top of flagstaff = 60°
Angle of elevation on the top of tower = 45°
Let BC be the height of the tower.
Let DC be the height of the flag staff.
Let the point on the ground be A.
In right △ABC,
The right angle is at B.
We know that cotθ =$\dfrac{{{\text{adjacent side}}}}{{{\text{opposite side}}}}$.
From the figure,
AB = BC cot 45°
Given height of the tower is 5m, i.e. BC =5m
AB = 5 x 1 (cot45° = 1)
AB = 5m - (1)
In the right angled triangle △ABD,
The right angle is at B.
We know that cotθ =$\dfrac{{{\text{adjacent side}}}}{{{\text{opposite side}}}}$.
From the figure,
AB = BD cot 60°
AB = (BC+CD) cot 60° (cot 60° = $\dfrac{1}{{\sqrt 3 }}$)
AB = (5+CD) $\dfrac{1}{{\sqrt 3 }}$ ........ (ii)
Equating (i) and (ii), we get
(5 + CD) $\dfrac{1}{{\sqrt 3 }}$ = 5
(5 + CD) = 5$\sqrt 3 $
CD = 5$\sqrt 3 $-5 = 5(1.732-1) = 5 × 0.732 = 3.66 m ($\sqrt 3 $=1.732)
Therefore the height of the flag - staff is 3.66 m.
Note: In order to solve this kind of question, the key is to carefully translate the given sentences into a diagram. The use of trigonometric equations is an important step.
A right angled triangle is a triangle in which one angle is a right angle (that is, a 90-degree angle). The relation between the sides and angles of a right triangle is the basis for trigonometry.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE