Answer
Verified
460.8k+ views
Hint: In this question, we need to determine the Young modulus of the wire such that it elongates to double its length when a force is applied on it. For this, we will use the relation between the Young modulus, force and length of the wire.
Complete step by step answer:
The product of the ratio of the force and the area of the cross-section of the wire and the ratio of the length of the wire to the change in the length of the wire while applying a force along the axis of the cross-section of the wire results in the Young modulus of the wire. Mathematically, $Y = \dfrac{F}{a} \times \dfrac{L}{{\vartriangle L}}$ where, F is the force applied on the wire, ‘a’ is the area of the cross-section of the wire, ‘l’ is the initial length of the wire (before applying the force), $\vartriangle l$ is the change in the length of the wire on applying a force and ‘Y’ is the young modulus of elasticity of the wire.
According to the question, when a force is applied on the wire, then the length of the wire doubles. So, change in the length of the wire is given as $\vartriangle l = 2l - l = l$.
Now, substituting $\vartriangle l = l$ in the equation $Y = \dfrac{F}{a} \times \dfrac{L}{{\vartriangle L}}$ to determine the expression for the young modulus of elasticity of the wire.
$
\Rightarrow Y= \dfrac{F}{a} \times \dfrac{L}{{\vartriangle L}} \\
\Rightarrow Y= \dfrac{F}{a} \times \dfrac{L}{L} \\
\Rightarrow Y= \dfrac{F}{a} \\
$
Hence, the young modulus of the wire such that it elongates when a force (F) is applied on it is $\dfrac{F}{a}$.
Hence,option A is the correct answer.
Note: The Young modulus or the modulus of elasticity in tension, is a mechanical property that measures the tensile stiffness of a solid material. In other words, it is the elasticity measurement of material.
Complete step by step answer:
The product of the ratio of the force and the area of the cross-section of the wire and the ratio of the length of the wire to the change in the length of the wire while applying a force along the axis of the cross-section of the wire results in the Young modulus of the wire. Mathematically, $Y = \dfrac{F}{a} \times \dfrac{L}{{\vartriangle L}}$ where, F is the force applied on the wire, ‘a’ is the area of the cross-section of the wire, ‘l’ is the initial length of the wire (before applying the force), $\vartriangle l$ is the change in the length of the wire on applying a force and ‘Y’ is the young modulus of elasticity of the wire.
According to the question, when a force is applied on the wire, then the length of the wire doubles. So, change in the length of the wire is given as $\vartriangle l = 2l - l = l$.
Now, substituting $\vartriangle l = l$ in the equation $Y = \dfrac{F}{a} \times \dfrac{L}{{\vartriangle L}}$ to determine the expression for the young modulus of elasticity of the wire.
$
\Rightarrow Y= \dfrac{F}{a} \times \dfrac{L}{{\vartriangle L}} \\
\Rightarrow Y= \dfrac{F}{a} \times \dfrac{L}{L} \\
\Rightarrow Y= \dfrac{F}{a} \\
$
Hence, the young modulus of the wire such that it elongates when a force (F) is applied on it is $\dfrac{F}{a}$.
Hence,option A is the correct answer.
Note: The Young modulus or the modulus of elasticity in tension, is a mechanical property that measures the tensile stiffness of a solid material. In other words, it is the elasticity measurement of material.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
When was Karauli Praja Mandal established 11934 21936 class 10 social science CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
Why is steel more elastic than rubber class 11 physics CBSE
Distinguish between the following Ferrous and nonferrous class 9 social science CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE