
A four degree polynomial equation in x is given in which if ${{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}}$ are roots of the equation ${{x}^{4}}-{{x}^{3}}\sin 2\beta +{{x}^{2}}\cos 2\beta -x\cos \beta -\sin \beta =0$ then find the value of:
${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}$
Answer
603.9k+ views
Hint: Using the given equation of degree four, we can write the roots ${{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}}$ as sum of the roots, sum of the roots taken two at a time, sum of the roots taken three at a time and product of the roots then use these expressions in the expansion of ${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}$. You can expand this expression by taking two expressions at a time $\left( {{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}} \right)$ and then use the formula of ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-x\left( y \right)} \right)$.
Complete step-by-step answer:
The polynomial equation given in the question is:
${{x}^{4}}-{{x}^{3}}\sin 2\beta +{{x}^{2}}\cos 2\beta -x\cos \beta -\sin \beta =0$
The roots of the above equation is ${{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}}$.
We know that using this polynomial equation of degree 4:
We can write the sum of the roots as follows:
$\begin{align}
& \left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=-\dfrac{-\sin 2\beta }{1} \right) \\
& \Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=\sin 2\beta ..............Eq.(1) \\
\end{align}$
We can write sum of the roots taken two at a time as follows:
${{x}_{1}}{{x}_{2}}+{{x}_{2}}{{x}_{3}}+{{x}_{3}}{{x}_{4}}+{{x}_{4}}{{x}_{1}}+{{x}_{1}}{{x}_{3}}+{{x}_{2}}{{x}_{4}}=\cos 2\beta $……………. Eq. (2)
We can write sum of the roots taken three at a time as follows:
${{x}_{1}}{{x}_{2}}{{x}_{3}}+{{x}_{2}}{{x}_{3}}{{x}_{4}}+{{x}_{3}}{{x}_{4}}{{x}_{1}}+{{x}_{4}}{{x}_{1}}{{x}_{2}}=\cos \beta $…………. Eq. (3)
We can write product of the roots as follows:
${{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}=-\sin \beta $……….. Eq. (4)
We have to find the value of:
${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}$
We are going to find the value of the above expression by taking the sum of first two terms and the sum of last two terms using the following formula:
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-x\left( y \right)} \right)$
${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)$…………. Eq. (5)
${{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}={{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)$………….. Eq. (6)
Now, adding eq. (5) and eq. (6) we get,
${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)$
Solving the right hand side of the above equation we get,
\[{{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)\]
Applying the formula of ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-x\left( y \right)} \right)$ in the above expression we get,
\[{{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)}+\dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)}}{1-\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)} \right)\]
Solving the R.H.S of the above equation we get,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\left( {{x}_{1}}+{{x}_{2}} \right)\left( 1-{{x}_{3}}{{x}_{4}} \right)+\left( {{x}_{3}}+{{x}_{4}} \right)\left( 1-{{x}_{1}}{{x}_{2}} \right)}{\left( 1-{{x}_{1}}{{x}_{2}} \right)\left( 1-{{x}_{3}}{{x}_{4}} \right)-\left( {{x}_{1}}+{{x}_{2}} \right)\left( {{x}_{3}}+{{x}_{4}} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}-\left( {{x}_{1}}{{x}_{3}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}{{x}_{4}} \right)+{{x}_{3}}+{{x}_{4}}-\left( {{x}_{3}}{{x}_{1}}{{x}_{2}}+{{x}_{4}}{{x}_{1}}{{x}_{2}} \right)}{1-\left( {{x}_{1}}{{x}_{2}}+{{x}_{3}}{{x}_{4}} \right)+{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}-\left( {{x}_{1}}{{x}_{3}}+{{x}_{1}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}+{{x}_{2}}{{x}_{4}} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}-\left( {{x}_{1}}{{x}_{3}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}{{x}_{4}}+{{x}_{3}}{{x}_{1}}{{x}_{2}}+{{x}_{4}}{{x}_{1}}{{x}_{2}} \right)}{1+{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}-\left( {{x}_{1}}{{x}_{2}}+{{x}_{3}}{{x}_{4}}+{{x}_{1}}{{x}_{3}}+{{x}_{1}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}+{{x}_{2}}{{x}_{4}} \right)} \right) \\
\end{align}$
In the above expression substitute the values of sum of the roots, sum of the roots taken two at a time, sum of the roots taken three at a time and product of the roots from $eq.\left( 1,2,3,4 \right)$.
${{\tan }^{-1}}\left( \dfrac{\sin 2\beta -\cos \beta }{1-\sin \beta -\cos 2\beta } \right)$
In the above expression, we can write:
$\begin{align}
& \sin 2\beta =2\sin \beta \cos \beta \\
& 1-\cos 2\beta =2{{\sin }^{2}}\beta \\
\end{align}$
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{2\sin \beta \cos \beta -\cos \beta }{2{{\sin }^{2}}\beta -\sin \beta } \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\cos \beta \left( 2\sin \beta -1 \right)}{\sin \beta \left( 2\sin \beta -1 \right)} \right) \\
\end{align}$
In the above expression $2\sin \beta -1$ will be cancelled out from the numerator and the denominator.
${{\tan }^{-1}}\left( \cot \beta \right)$
From the above solution, we have got the value of ${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}$ as ${{\tan }^{-1}}\left( \cot \beta \right)$.
Note: Be careful in writing the formula of ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-x\left( y \right)} \right)$. You might wrongly write the signs in this formula like in the numerator you can see a plus sign so instead of writing a plus sign, you could write minus sign and in the denominator, you can see a minus sign so instead of writing minus sign you can put plus sign.
Blunders in putting signs are very commonly observed.
Complete step-by-step answer:
The polynomial equation given in the question is:
${{x}^{4}}-{{x}^{3}}\sin 2\beta +{{x}^{2}}\cos 2\beta -x\cos \beta -\sin \beta =0$
The roots of the above equation is ${{x}_{1}},{{x}_{2}},{{x}_{3}},{{x}_{4}}$.
We know that using this polynomial equation of degree 4:
We can write the sum of the roots as follows:
$\begin{align}
& \left( {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=-\dfrac{-\sin 2\beta }{1} \right) \\
& \Rightarrow {{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}=\sin 2\beta ..............Eq.(1) \\
\end{align}$
We can write sum of the roots taken two at a time as follows:
${{x}_{1}}{{x}_{2}}+{{x}_{2}}{{x}_{3}}+{{x}_{3}}{{x}_{4}}+{{x}_{4}}{{x}_{1}}+{{x}_{1}}{{x}_{3}}+{{x}_{2}}{{x}_{4}}=\cos 2\beta $……………. Eq. (2)
We can write sum of the roots taken three at a time as follows:
${{x}_{1}}{{x}_{2}}{{x}_{3}}+{{x}_{2}}{{x}_{3}}{{x}_{4}}+{{x}_{3}}{{x}_{4}}{{x}_{1}}+{{x}_{4}}{{x}_{1}}{{x}_{2}}=\cos \beta $…………. Eq. (3)
We can write product of the roots as follows:
${{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}=-\sin \beta $……….. Eq. (4)
We have to find the value of:
${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}$
We are going to find the value of the above expression by taking the sum of first two terms and the sum of last two terms using the following formula:
${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-x\left( y \right)} \right)$
${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)$…………. Eq. (5)
${{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}={{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)$………….. Eq. (6)
Now, adding eq. (5) and eq. (6) we get,
${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)$
Solving the right hand side of the above equation we get,
\[{{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)\]
Applying the formula of ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-x\left( y \right)} \right)$ in the above expression we get,
\[{{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)+{{\tan }^{-1}}\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)={{\tan }^{-1}}\left( \dfrac{\dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)}+\dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)}}{1-\left( \dfrac{{{x}_{1}}+{{x}_{2}}}{1-{{x}_{1}}\left( {{x}_{2}} \right)} \right)\left( \dfrac{{{x}_{3}}+{{x}_{4}}}{1-{{x}_{3}}\left( {{x}_{4}} \right)} \right)} \right)\]
Solving the R.H.S of the above equation we get,
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{\left( {{x}_{1}}+{{x}_{2}} \right)\left( 1-{{x}_{3}}{{x}_{4}} \right)+\left( {{x}_{3}}+{{x}_{4}} \right)\left( 1-{{x}_{1}}{{x}_{2}} \right)}{\left( 1-{{x}_{1}}{{x}_{2}} \right)\left( 1-{{x}_{3}}{{x}_{4}} \right)-\left( {{x}_{1}}+{{x}_{2}} \right)\left( {{x}_{3}}+{{x}_{4}} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}-\left( {{x}_{1}}{{x}_{3}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}{{x}_{4}} \right)+{{x}_{3}}+{{x}_{4}}-\left( {{x}_{3}}{{x}_{1}}{{x}_{2}}+{{x}_{4}}{{x}_{1}}{{x}_{2}} \right)}{1-\left( {{x}_{1}}{{x}_{2}}+{{x}_{3}}{{x}_{4}} \right)+{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}-\left( {{x}_{1}}{{x}_{3}}+{{x}_{1}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}+{{x}_{2}}{{x}_{4}} \right)} \right) \\
& ={{\tan }^{-1}}\left( \dfrac{{{x}_{1}}+{{x}_{2}}+{{x}_{3}}+{{x}_{4}}-\left( {{x}_{1}}{{x}_{3}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}{{x}_{4}}+{{x}_{3}}{{x}_{1}}{{x}_{2}}+{{x}_{4}}{{x}_{1}}{{x}_{2}} \right)}{1+{{x}_{1}}{{x}_{2}}{{x}_{3}}{{x}_{4}}-\left( {{x}_{1}}{{x}_{2}}+{{x}_{3}}{{x}_{4}}+{{x}_{1}}{{x}_{3}}+{{x}_{1}}{{x}_{4}}+{{x}_{2}}{{x}_{3}}+{{x}_{2}}{{x}_{4}} \right)} \right) \\
\end{align}$
In the above expression substitute the values of sum of the roots, sum of the roots taken two at a time, sum of the roots taken three at a time and product of the roots from $eq.\left( 1,2,3,4 \right)$.
${{\tan }^{-1}}\left( \dfrac{\sin 2\beta -\cos \beta }{1-\sin \beta -\cos 2\beta } \right)$
In the above expression, we can write:
$\begin{align}
& \sin 2\beta =2\sin \beta \cos \beta \\
& 1-\cos 2\beta =2{{\sin }^{2}}\beta \\
\end{align}$
$\begin{align}
& {{\tan }^{-1}}\left( \dfrac{2\sin \beta \cos \beta -\cos \beta }{2{{\sin }^{2}}\beta -\sin \beta } \right) \\
& ={{\tan }^{-1}}\left( \dfrac{\cos \beta \left( 2\sin \beta -1 \right)}{\sin \beta \left( 2\sin \beta -1 \right)} \right) \\
\end{align}$
In the above expression $2\sin \beta -1$ will be cancelled out from the numerator and the denominator.
${{\tan }^{-1}}\left( \cot \beta \right)$
From the above solution, we have got the value of ${{\tan }^{-1}}{{x}_{1}}+{{\tan }^{-1}}{{x}_{2}}+{{\tan }^{-1}}{{x}_{3}}+{{\tan }^{-1}}{{x}_{4}}$ as ${{\tan }^{-1}}\left( \cot \beta \right)$.
Note: Be careful in writing the formula of ${{\tan }^{-1}}x+{{\tan }^{-1}}y={{\tan }^{-1}}\left( \dfrac{x+y}{1-x\left( y \right)} \right)$. You might wrongly write the signs in this formula like in the numerator you can see a plus sign so instead of writing a plus sign, you could write minus sign and in the denominator, you can see a minus sign so instead of writing minus sign you can put plus sign.
Blunders in putting signs are very commonly observed.
Recently Updated Pages
Master Class 10 Computer Science: Engaging Questions & Answers for Success

Master Class 10 General Knowledge: Engaging Questions & Answers for Success

Master Class 10 English: Engaging Questions & Answers for Success

Master Class 10 Social Science: Engaging Questions & Answers for Success

Master Class 10 Maths: Engaging Questions & Answers for Success

Master Class 10 Science: Engaging Questions & Answers for Success

Trending doubts
What is the median of the first 10 natural numbers class 10 maths CBSE

The draft of the Preamble of the Indian Constitution class 10 social science CBSE

Who gave "Inqilab Zindabad" slogan?

Why is there a time difference of about 5 hours between class 10 social science CBSE

Write a letter to the principal requesting him to grant class 10 english CBSE

The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths

