Answer
Verified
498.9k+ views
Hint- Here, we will be assuming the original fraction which will consist of two unknowns i.e., numerator and denominator. According to the problem, we will obtain two equations in two unknowns and then will use elimination method.
Complete step-by-step answer:
Let us suppose that the original fraction is $\dfrac{x}{y}$ where x is the numerator of the original fraction and y is the denominator of the original fraction.
Now, when 1 is subtracted from both its numerator and denominator of the original fraction, the fraction reduces to $\dfrac{{x - 1}}{{y - 1}}$.
According to problem statement, $\dfrac{{x - 1}}{{y - 1}} = \dfrac{1}{3}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 3\left( {x - 1} \right) = 1\left( {y - 1} \right) \Rightarrow 3x - 3 = y - 1 \\
\Rightarrow 3x - y - 2 = 0{\text{ }} \to {\text{(1)}} \\
$
Now, when 3 is added to both the numerator and the denominator of the original fraction, the fraction reduces to $\dfrac{{x + 3}}{{y + 3}}$.
According to problem statement, $\dfrac{{x + 3}}{{y + 3}} = \dfrac{1}{2}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 2\left( {x + 3} \right) = 1\left( {y + 3} \right) \Rightarrow 2x + 6 = y + 3 \\
\Rightarrow 2x - y + 3 = 0{\text{ }} \to {\text{(2)}} \\
$
Following the approach of the Elimination method.
By subtracting equation (2) from equation (1), we get
\[ \Rightarrow 3x - y - 2 - \left( {2x - y + 3} \right) = 0 - 0 \Rightarrow 3x - y - 2 - 2x + y - 3 = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
By putting \[x = 5\] in equation (1), we get
$ \Rightarrow \left( {3 \times 5} \right) - y - 2 = 0 \Rightarrow 15 - 2 = y \Rightarrow y = 13$
Therefore, the numerator of the original fraction (x) is 5 and the denominator of the original fraction (y) is 13.
Hence, the original fraction is $\dfrac{5}{{13}}$.
Note- In this particular problem, we can also use substitution method instead of elimination method in order to obtain the values of two variables assumed (x and y). Here, we can also verify that the obtained original fraction is correct or not by simply subtracting 1 from both numerator and denominator which gives $\dfrac{4}{{12}} = \dfrac{1}{3}$ and by adding 3 to both numerator and denominator which gives $\dfrac{8}{{16}} = \dfrac{1}{2}$.
Complete step-by-step answer:
Let us suppose that the original fraction is $\dfrac{x}{y}$ where x is the numerator of the original fraction and y is the denominator of the original fraction.
Now, when 1 is subtracted from both its numerator and denominator of the original fraction, the fraction reduces to $\dfrac{{x - 1}}{{y - 1}}$.
According to problem statement, $\dfrac{{x - 1}}{{y - 1}} = \dfrac{1}{3}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 3\left( {x - 1} \right) = 1\left( {y - 1} \right) \Rightarrow 3x - 3 = y - 1 \\
\Rightarrow 3x - y - 2 = 0{\text{ }} \to {\text{(1)}} \\
$
Now, when 3 is added to both the numerator and the denominator of the original fraction, the fraction reduces to $\dfrac{{x + 3}}{{y + 3}}$.
According to problem statement, $\dfrac{{x + 3}}{{y + 3}} = \dfrac{1}{2}$
By applying cross multiplication in the above equation, we get
$
\Rightarrow 2\left( {x + 3} \right) = 1\left( {y + 3} \right) \Rightarrow 2x + 6 = y + 3 \\
\Rightarrow 2x - y + 3 = 0{\text{ }} \to {\text{(2)}} \\
$
Following the approach of the Elimination method.
By subtracting equation (2) from equation (1), we get
\[ \Rightarrow 3x - y - 2 - \left( {2x - y + 3} \right) = 0 - 0 \Rightarrow 3x - y - 2 - 2x + y - 3 = 0 \Rightarrow x - 5 = 0 \Rightarrow x = 5\]
By putting \[x = 5\] in equation (1), we get
$ \Rightarrow \left( {3 \times 5} \right) - y - 2 = 0 \Rightarrow 15 - 2 = y \Rightarrow y = 13$
Therefore, the numerator of the original fraction (x) is 5 and the denominator of the original fraction (y) is 13.
Hence, the original fraction is $\dfrac{5}{{13}}$.
Note- In this particular problem, we can also use substitution method instead of elimination method in order to obtain the values of two variables assumed (x and y). Here, we can also verify that the obtained original fraction is correct or not by simply subtracting 1 from both numerator and denominator which gives $\dfrac{4}{{12}} = \dfrac{1}{3}$ and by adding 3 to both numerator and denominator which gives $\dfrac{8}{{16}} = \dfrac{1}{2}$.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE