Courses
Courses for Kids
Free study material
Offline Centres
More
Store Icon
Store
seo-qna
SearchIcon
banner

A frustum of a pyramid has an upper base 100m by 10m and a lower base of 80m by 8m, if the altitude of the frustum is 5m, find the volume of the frustum (in cu. m.)
A. 4567.67
B. 3873.33
C. 4066.67
D. 2345.98

Answer
VerifiedVerified
503.4k+ views
1 likes
like imagedislike image
Hint: In this particular problem apply the direct formula for the volume of frustum that is Volume=h3(A1+A2+A1×A2), where h is the altitude of the frustum, A1 and A2 are the areas of the upper and lower base of the frustum.

Complete step by step answer:
seo images

As we know that to find the volume of the frustum first, we had to find the area of its upper and lower base.
Now as we can see from the above figure that the lower and upper base of the frustum is in rectangle shape.
And the area of the rectangle is calculated as Area=Length×Breadth.
So, let the area of the upper base of the rectangle be A1.
So, A1=100×10=1000m2
And let the area of the lower base of the rectangle be A2.
So, A2=80×8=640m2
And it is given that the height (altitude) of the frustum is 5m.
So, now let us the put the values in the formula of volume of frustum that is h3(A1+A2+A1×A2)
So, the volume of the frustum will be = =53(1000+640+1000×640)=53(1640+640000)
Volume = =53(1640+800)=53(2440)=122003=4066.66m3

Hence, the correct option will be C.

Note: Whenever we face such types of problems then first, we have to find the area of the rectangle using the formula Area=Length×Breadth. And after that we can directly put the value of area and height in the formula to find the volume of the frustum and note that the formula for volume is the same for both cases (Lower base is more than upper base or upper base is more than lower base). This will be the easiest and efficient way to find the solution of the problem.
Latest Vedantu courses for you
Grade 11 Science PCM | CBSE | SCHOOL | English
CBSE (2025-26)
calendar iconAcademic year 2025-26
language iconENGLISH
book iconUnlimited access till final school exam
tick
School Full course for CBSE students
PhysicsPhysics
ChemistryChemistry
MathsMaths
₹41,848 per year
Select and buy