Answer
Verified
431.7k+ views
Hint To solve this question, we need to use the first law of thermodynamics. For that, we have to determine the work done by using its expression for the isobaric process. Then substituting the value of the work done, and the given value of the heat, we will get the value of the change in the internal energy.
Formula used: The formulae used to solve this question are
${W_p} = P\Delta V$, here ${W_p}$ is the work done in an isobaric process by a pressure of $P$ which changes the volume by $\Delta V$.
$Q = \Delta U + W$, here $Q$ is the heat, $\Delta U$ is the change in the internal energy, and $W$ is the work done.
Complete step-by-step solution:
Since the pressure acting on the gas is constant, so the gas undergoes an isobaric process in which the work done is given by
${W_p} = P\Delta V$
$ \Rightarrow {W_p} = P\left( {{V_2} - {V_1}} \right)$
According to the question, $P = 4.5 \times {10^5}Pa$, ${V_1} = 0.5{m^3}$ and ${V_2} = 2.0{m^3}$. Substituting these in above, we get
\[{W_p} = 4.5 \times {10^5}\left( {2.0 - 0.5} \right)\]
$ \Rightarrow {W_p} = 4.5 \times {10^5} \times 1.5$
On solving we get
${W_p} = 6.75 \times {10^5}J$
The heat given to the gas is equal to $800KJ$. So we have $Q = 800KJ$.
We know that $1KJ = {10^3}J$. So we get
$Q = 800 \times {10^3}J$
$ \Rightarrow Q = 8 \times {10^5}J$
From the first law of thermodynamics, we have
$Q = \Delta U + W$
Substituting $Q = 8 \times {10^5}J$ and $W = {W_p} = 6.75 \times {10^5}J$ in the above equation, we get
$8 \times {10^5} = \Delta U + 6.75 \times {10^5}$
$ \Rightarrow \Delta U = 8 \times {10^5} - 6.75 \times {10^5}$
On solving we finally get
$\Delta U = 1.25 \times {10^5}J$
Thus, the change in internal energy of the gas is equal to $1.25 \times {10^5}J$.
Hence, the correct answer is option D.
Note: The sign convention for the heat must be carefully followed. Since the system is receiving the heat, it is taken as positive. Also, do not forget to write the value of the heat in Joules, which is given in kiloJoules.
Formula used: The formulae used to solve this question are
${W_p} = P\Delta V$, here ${W_p}$ is the work done in an isobaric process by a pressure of $P$ which changes the volume by $\Delta V$.
$Q = \Delta U + W$, here $Q$ is the heat, $\Delta U$ is the change in the internal energy, and $W$ is the work done.
Complete step-by-step solution:
Since the pressure acting on the gas is constant, so the gas undergoes an isobaric process in which the work done is given by
${W_p} = P\Delta V$
$ \Rightarrow {W_p} = P\left( {{V_2} - {V_1}} \right)$
According to the question, $P = 4.5 \times {10^5}Pa$, ${V_1} = 0.5{m^3}$ and ${V_2} = 2.0{m^3}$. Substituting these in above, we get
\[{W_p} = 4.5 \times {10^5}\left( {2.0 - 0.5} \right)\]
$ \Rightarrow {W_p} = 4.5 \times {10^5} \times 1.5$
On solving we get
${W_p} = 6.75 \times {10^5}J$
The heat given to the gas is equal to $800KJ$. So we have $Q = 800KJ$.
We know that $1KJ = {10^3}J$. So we get
$Q = 800 \times {10^3}J$
$ \Rightarrow Q = 8 \times {10^5}J$
From the first law of thermodynamics, we have
$Q = \Delta U + W$
Substituting $Q = 8 \times {10^5}J$ and $W = {W_p} = 6.75 \times {10^5}J$ in the above equation, we get
$8 \times {10^5} = \Delta U + 6.75 \times {10^5}$
$ \Rightarrow \Delta U = 8 \times {10^5} - 6.75 \times {10^5}$
On solving we finally get
$\Delta U = 1.25 \times {10^5}J$
Thus, the change in internal energy of the gas is equal to $1.25 \times {10^5}J$.
Hence, the correct answer is option D.
Note: The sign convention for the heat must be carefully followed. Since the system is receiving the heat, it is taken as positive. Also, do not forget to write the value of the heat in Joules, which is given in kiloJoules.
Recently Updated Pages
Fill in the blanks with suitable prepositions Break class 10 english CBSE
Fill in the blanks with suitable articles Tribune is class 10 english CBSE
Rearrange the following words and phrases to form a class 10 english CBSE
Select the opposite of the given word Permit aGive class 10 english CBSE
Fill in the blank with the most appropriate option class 10 english CBSE
Some places have oneline notices Which option is a class 10 english CBSE
Trending doubts
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Which are the Top 10 Largest Countries of the World?
What is the definite integral of zero a constant b class 12 maths CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Differentiate between homogeneous and heterogeneous class 12 chemistry CBSE
Define the term system surroundings open system closed class 11 chemistry CBSE
Full Form of IASDMIPSIFSIRSPOLICE class 7 social science CBSE
Change the following sentences into negative and interrogative class 10 english CBSE