Answer
Verified
463.2k+ views
Hint: In this question A got \[30\% \] but he failed by 120 marks. B got \[60\% \] which is 240 marks more than the required marks to pass. So, we have to find the passing percentage. Let the total marks of the exam be \[x\]. Now we try to find out the \[30\% \] of the total marks obtained by A. Similarly we try to find out \[60\% \] marks of total marks that are obtained by B. Now we also assume that the passing marks is P. From the above assumption and marks obtained by candidate two equations will be formed. So, with the help of two equations we can find out the two unknown variables.
Complete step by step solution:
According to the given information, we will proceed to the question from the starting statement. As ‘A’ got\[30\% \] , ‘B’ got \[60\% \] and followed by other given information in the question.
Step1: ‘A’ got \[30\% \] marks but failed by 120 marks. So, let the total number of marks be\[x\]. So, we find out the \[30\% \] of the total marks \[x\]. And one more assumption is let the passing marks be \[P\]. So, the marks obtained by ‘A’
\[\begin{array}{l}
30\% ofx\\
= x \times \dfrac{{30}}{{100}} = \dfrac{{3x}}{{10}}
\end{array}\]
‘A’ failed by 120 marks, so the marks obtained by ‘A’ will be 120 less than from the passing marks, so,
\[\begin{array}{l}
\dfrac{{3x}}{{10}} = (P - 120)\\
\Rightarrow 3x = 10P - 1200\\
\Rightarrow 3x - 10P = - 1200\\
10P - 3x = 1200 \to equation(1)
\end{array}\]
Step2: The marks obtained by student ‘B’ is \[60\% \] that is 240 marks more than required passing marks. So, ‘B’ got \[60\% \] out of the total marks.
\[\begin{array}{l}
60\% ofx\\
= x \times \dfrac{{60}}{{100}}\\
= \dfrac{{6x}}{{10}}
\end{array}\]
Since passing marks be\[P\] and marks obtained by ‘B’ is 240 more than it so
\[\begin{array}{l}
\dfrac{{6x}}{{10}} = P + 240\\
\Rightarrow \dfrac{{6x}}{{10}} - \dfrac{P}{1} = 240\\
\Rightarrow 6x - 10P = 2400\\
6x - 10P = 2400 \to equation(2)
\end{array}\]
Step3: We have got two equations {equation (1) and equation (2)}.
Now we will try to solve it. So, we add equation (1) and equation (2).
\[\begin{array}{l}
10P - 3x = 1200\{ equation(1)\} \\
\underline { + 6x - 10P = 2400\{ equation(2)\} } \\
3x = 3600\\
\Rightarrow x = \dfrac{{3600}}{3}\\
x = 1200
\end{array}\]
Step4: Now, total marks of the exam are 1200 and we have to find passing marks\[P\] . So, we put the value of \[x\]in . So,
\[\begin{array}{l}
10P - 3x = 1200\{from equation(1)\} \\
\Rightarrow 10P - 3 \times 1200 = 1200(x = 1200)\\
\Rightarrow 10P = 1200 + 3600\\
\Rightarrow P = \dfrac{{4800}}{{10}}\\
P = 480
\end{array}\]
Hence, the passing marks of the exam is \[480\] .
So, passing percentage
\[\begin{array}{l}
= \dfrac{{480}}{{1200}} \times 100\\
= 40\%
\end{array}\]
Note: It is based on linear equation conversion from the statement of the question. When we are converting it into a linear equation, follow all the conditions carefully because misinterpretation will lead to a wrong answer.
Complete step by step solution:
According to the given information, we will proceed to the question from the starting statement. As ‘A’ got\[30\% \] , ‘B’ got \[60\% \] and followed by other given information in the question.
Step1: ‘A’ got \[30\% \] marks but failed by 120 marks. So, let the total number of marks be\[x\]. So, we find out the \[30\% \] of the total marks \[x\]. And one more assumption is let the passing marks be \[P\]. So, the marks obtained by ‘A’
\[\begin{array}{l}
30\% ofx\\
= x \times \dfrac{{30}}{{100}} = \dfrac{{3x}}{{10}}
\end{array}\]
‘A’ failed by 120 marks, so the marks obtained by ‘A’ will be 120 less than from the passing marks, so,
\[\begin{array}{l}
\dfrac{{3x}}{{10}} = (P - 120)\\
\Rightarrow 3x = 10P - 1200\\
\Rightarrow 3x - 10P = - 1200\\
10P - 3x = 1200 \to equation(1)
\end{array}\]
Step2: The marks obtained by student ‘B’ is \[60\% \] that is 240 marks more than required passing marks. So, ‘B’ got \[60\% \] out of the total marks.
\[\begin{array}{l}
60\% ofx\\
= x \times \dfrac{{60}}{{100}}\\
= \dfrac{{6x}}{{10}}
\end{array}\]
Since passing marks be\[P\] and marks obtained by ‘B’ is 240 more than it so
\[\begin{array}{l}
\dfrac{{6x}}{{10}} = P + 240\\
\Rightarrow \dfrac{{6x}}{{10}} - \dfrac{P}{1} = 240\\
\Rightarrow 6x - 10P = 2400\\
6x - 10P = 2400 \to equation(2)
\end{array}\]
Step3: We have got two equations {equation (1) and equation (2)}.
Now we will try to solve it. So, we add equation (1) and equation (2).
\[\begin{array}{l}
10P - 3x = 1200\{ equation(1)\} \\
\underline { + 6x - 10P = 2400\{ equation(2)\} } \\
3x = 3600\\
\Rightarrow x = \dfrac{{3600}}{3}\\
x = 1200
\end{array}\]
Step4: Now, total marks of the exam are 1200 and we have to find passing marks\[P\] . So, we put the value of \[x\]in . So,
\[\begin{array}{l}
10P - 3x = 1200\{from equation(1)\} \\
\Rightarrow 10P - 3 \times 1200 = 1200(x = 1200)\\
\Rightarrow 10P = 1200 + 3600\\
\Rightarrow P = \dfrac{{4800}}{{10}}\\
P = 480
\end{array}\]
Hence, the passing marks of the exam is \[480\] .
So, passing percentage
\[\begin{array}{l}
= \dfrac{{480}}{{1200}} \times 100\\
= 40\%
\end{array}\]
Note: It is based on linear equation conversion from the statement of the question. When we are converting it into a linear equation, follow all the conditions carefully because misinterpretation will lead to a wrong answer.
Recently Updated Pages
Identify the feminine gender noun from the given sentence class 10 english CBSE
Your club organized a blood donation camp in your city class 10 english CBSE
Choose the correct meaning of the idiomphrase from class 10 english CBSE
Identify the neuter gender noun from the given sentence class 10 english CBSE
Choose the word which best expresses the meaning of class 10 english CBSE
Choose the word which is closest to the opposite in class 10 english CBSE
Trending doubts
Which are the Top 10 Largest Countries of the World?
Fill the blanks with the suitable prepositions 1 The class 9 english CBSE
How do you graph the function fx 4x class 9 maths CBSE
Give 10 examples for herbs , shrubs , climbers , creepers
Change the following sentences into negative and interrogative class 10 english CBSE
Difference between Prokaryotic cell and Eukaryotic class 11 biology CBSE
The Equation xxx + 2 is Satisfied when x is Equal to Class 10 Maths
Write a letter to the principal requesting him to grant class 10 english CBSE
What organs are located on the left side of your body class 11 biology CBSE